COOPER SIMPSON

Computational and Mathematical Scientist

rscooper@uw.edu 💡 Seattle, WA

April 29, 2025

EDUCATION

Applied Mathematics Ph.D

University of Washington Seattle

2024 - Present

GPA: 3.83

Dissertation: N.A.

Advisor: Aleksandr (Sasha) Aravkin

Applied Mathematics M.S.

University of Colorado Boulder

= 2020 - 2022

@ GPA: 3.863

Thesis: Second-Order Non-Convex Optimization

Advisor: Stephen Becker

Applied Mathematics B.S.

University of Colorado Boulder

2017 - 2020

@ GPA: 3.933

Minor: Computer Science

Deep Learning Optimization Functional Analysis Real Analysis Complex Analysis Officerential Eqs. Machine Learning

Linear Algebra

Probability (Statistics) (Algorithms) (Numerics) (Algorithmic Economics

WORK & RESEARCH EXPERIENCE

Professional Research Assistant

Aerospace Mechanics Research Center

Q CU, Boulder

- Supervised by Prof. Alireza Doostan and in collaboration with Profs. Stephen Becker, John Evans, and Ken Jansen
- Investigated non-linear compression techniques, such as autoencoding and implicit representation neural networks, for large-scale scientific simulations
- · Developed QuadConv, a quadrature-based convolution operator for use in deep learning on non-uniform meshes
- · Developed a limited memory sketching-based paradigm for online (in-situ) training of neural compressors
- Working with supercomputer systems through Argonne Leadership Computing Facility (Polaris & Theta) and CU Boulder (Alpine & Blanca)

Development Intern

Electro Magnetic Applications (EMA3D)

June-Aug 2021

Denver, CO

- Developed production software for Charge and Cable electromagnetic simulation tools
- Implemented generalized barycentric interpolation for arbitrary convex polyhedra
- Built post-processing functionality for complex unstructured 3D meshes

Research Assistant

Correll Robotics Lab

m Dec 2018-May 2021

Q CU. Boulder

- Aided in the development of nn4mc, a software package which facilitates embedding complex neural networks on microcontrollers
- Investigated methods and tools for embedding complex distributed robotic behaviour through compiled high level primitives

Visiting Research Assistant

University of Southern California: ANRG

Remote

- Participated in the Robotics and Autonomous Systems Research Experience for Undergraduates
- Conducted research with professor Bhaskar Krishnamachari on a drift-plus-penalty inspired method for constrained robotic resource collection in a stochastic environment.

TEACHING EXPERIENCE

Various duties which included teaching recitations, running office hours, developing course materials, grading, and more.

Lecturer

Department of Applied Mathematics

Q CU. Boulder

APPM 4720/5720 Applied Deep Learning 1

苗 Fall 2023

Graduate Teaching Assistant

Department of Applied Mathematics

OCU, Boulder

苗 Fall 2021

• APPM 2360 Differential Equations with Linear Algebra

APPM 3570 Applied Probability

Undergradute Course Assistant

College of Engineering

OCU, Boulder

苗 Fall 2019

Spring 2019 # Fall 2018

- CSCI 2360 Computer Science 2: Data Structures
- CSCI 1300 Computer Science 1: Starting Computing

PROJECTS & PUBLICATIONS

Regularized Saddle-Free Newton Independent, Master's Thesis

R-SFN is a novel second-order Newton-type method for non-convex optimization. A non-linear transformation to the Hessian ensures global convergence to second-order stationary points and an efficient matrix-free implementation.

- Cooper Simpson and Stephen Becker. Regularized Saddle-Free Newton: Saddle Avoidance and Efficient Implementation. 2023. URL: https://rs-coop.github.io/projects/research/rsfn
- Cooper Simpson. "Regularized Saddle-Free Newton: Saddle Avoidance and Efficient Implementation". M.S. Thesis. Dept. of Applied Mathematics, CU Boulder, 2022. URL: https://rs-coop.github.io/projects/research/rsfn

Quadrature-Based Convolutions CU AMReC

QuadConv is a quadrature-based discrete convolution operator for use in training deep neural networks on non-uniform data. For neural compression, we have shown it matches or exceeds the performance of traditional convolution on a grid, and maintains strong results on meshes with non-uniform distributions.

 Kevin Doherty, Cooper Simpson, et al. "QuadConv: Quadrature-Based Convolutions with Applications to Non-Uniform PDE Data Compression". In: Journal of Computational Physics (2023). DOI: 10.1016/j.jcp.2023.112636

Exchange Economy Dynamics Independent

Work towards generalizing the proportional response dynamic to graphical exchange economies with arbitrary network structure and endowments.

• Cooper Simpson. Generalizing the Proportional Response Dynamic for Exchange Economies. 2023. URL: https://rs-coop.github.io/projects/research/prd

Neural Networks for Microcontrollers Correll Robotics Lab

Software packages for translating trained neural networks into C code for use in embedded systems.

• S. Aguasvivas, D. Hughes, C. Simpson, et al. "Embedded Neural Networks for Robot Autonomy". In: Robotics Research. Cham: Springer International Publishing, 2022, pp. 242-257. DOI: 10.1007/978-3-030-95459-8_15

SOFTWARE

QuasiNewton Lead

A Julia package for non-convex Newton-type optimization algorithms.

PyTorch-QuadConv Co-Lead

Quadrature-based convolutions for deep learning in PyTorch.

RandNLA Lead

A Julia package for randomized numerical linear algebra.

nn4mc Co-Lead

Python and C++ packages for translating trained neural networks into C code for use in embedded systems.

PyTorch-ARC Co-Lead

A PyTorch implementation of the Adaptive Regularization with Cubics optimization algorithm.

AWARDS & CERTIFICATES

Department of Energy Computational Science Graduate Fellowship

Highly prestigious national fellowship providing four years of doctoral funding and professional development to pursue research in computational science and engineering with a focus on enabling advances for high-performance computing.

Stephen Becker	Associate Professor of Applied Math, CU Boulder	■ stephen.becker@colorado.edu
Sasha Aravkin	Assistant Professor of Applied Math, UW Seattle	⊠ saravkin@uw.edu
REFERENCES		
English: Native German: Conversational French: Beginner		
LANGUAGES		
Python PyTorch Julia C-	++ C# C LaTex Linux Git HPC CAD	
SKILLS		
Gateway to Space Received best in option	award at spring 2018 ITLL Design Expo for balloon satellite kinetic	energy generation experiment.
Solidworks Associate Certified with a perfect	te score on the CSWA exam in May 2019.	
CRA Honorable Me 2020 Computing Resear	ntion rch Association Outstanding Undergraduate Researcher.	
Two-year UW Applied N	Math departmental fellowship. Dropped with a year remaining after	receiving the DOE CSGF.

Associate Professor of Aerospace Engineering, CU Boulder

Associate Professor of Computer Science, CU Boulder

■ doostan@colorado.edu

Wan Fellowship

Alireza Doostan

Rafael Frongillo