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ABSTRACT 

 

COMPUTATIONAL REGIOSPECIFIC ANALYSIS OF BRAIN LIPIDOMIC PROFILES 

 

 

Austin Ahlstrom 

Mathematics Department 

Bachelor of Science 

 

 

Mass spectrometry provides an extensive data set that can prove unwieldy for 

practical analytical purposes. Applying programming and machine learning methods to 

automate region analysis in DESI mass spectrometry of mouse brain tissue can help 

direct and refine such an otherwise unusable data set. The results carry promise of faster, 

more reliable analysis of this type, and yield interesting insights into molecular 

characteristics of regions of interest within these brain samples. These results have 

significant implications in continued investigation of molecular processes in the brain, 

along with other aspects of mass spectrometry, collective analysis of biological molecules 

(i.e. omics), and biology in general. 
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Introduction 

Technological advancements have been crucial for scientific understanding of 

human biology, and have potential to do so much more. Consider the study of 

neurodegeneration (including Alzheimer’s and Parkinson’s disease, etc.), a condition that 

afflicts more than twenty million people worldwide, and is only increasing in 

prevalence.1 Despite significant scientific study over the past several years, the molecular 

processes that underlie these conditions are still not completely understood. 

 

This is not to say that progress has not been made. Scientific advancements in the 

study of neurodegeneration are numerous, like research performed by Dawson and 

Dawson2, Rubinsztein3, and Glass, et al.4 Discoveries fueled by improvements in 

scientific technology have dramatically expanded the knowledge of the scientific 

community regarding neurodegenerative conditions. 

 

However, the results of investigations such as these have been limited in terms of 

substantive treatment developments for neurodegeneration. This is true not only of 

neurodegeneration, but also of many similar areas wherein scientific comprehension of 

base-level processes is incomplete. Further expansion and refinement of techniques and 

technologies must be explored to help accelerate such developments.  This paper will 

introduce such new techniques in the area of mass spectrometry toward the aim of 

distilling massive data sets into a usable form, adding to modern scientific understanding. 

 

Mass Spectrometry 

Mass spectrometry has received considerable attention within the scientific 

community. The general idea of mass spectrometry has been in use for more than a 

century, and methods applying these principles have been developed continuously. 

Through the relatively recent efforts of researchers including Fenn, et al.5 and Takáts, et 

al.6, effective capabilities to apply mass spectrometry to biological macromolecules now 

exist. The result of these achievements is a previously unprecedented capacity to examine 

organs such as the brain on a molecular level. 

 

Among the advantages of mass spectrometry is the amount of data it yields. Given 

a thin slice of tissue, a mass spectrometer is able to divide the specimen into tiny stripes, 

then to sample each of these stripes at regular intervals in order to divide the specimen 

into a two-dimensional grid. Each subdivision can then be sampled, using ionization and 

                                                
1 Mayeux, R. Epidemiology of Neurodegeneration. Annual Review of Neuroscience 26, 801-104 
(2003). 
2 Dawson, T.M. & Dawson,V.L. Molecular Pathways of Neurodegeneration in Parkinson's 
Disease. Science 31, 819-822 (2003). 
3 Rubinsztein, D.C. The roles of intracellular protein-degradation pathways in neurodegeneration. 
Nature 443, 780-786 (2006). 
4 Glass, C.K., Saijo, K., Winner, B., Marchetto, M.C. & Gage, F.H. Mechanisms Underlying 

Inflammation in Neurodegeneration. Cell 140, 918-934 (2010). 
5 Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F. & Whitehouse, C.M. Electrospray ionization for 
mass spectrometry of large biomolecules. Science 246, 64-71 (1989). 
6 Takáts, Z., Wiseman, J.M., Gologan, B. & Cooks, R.G. Mass Spectrometry Sampling Under 
Ambient Conditions with Desorption Electrospray Ionization. Science 306, 471-473 (2004). 
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rate of movement through a vacuum to determine individual abundances of molecules 

separated by their mass and charge. Within a relatively short period of time, this 

generates millions of numeric observations from the single specimen, corresponding to 

different tissue regions as well as different inferred molecule types, sorted by mass-to-

charge ratio (m/z). 

 

In addition, mass spectrometry permits a crucial spatial component for tissue 

analysis. Whereas methods antedating these breakthroughs would often blend, for 

example, entire organs together, and thus be incapable of analyzing molecular 

composition of anything more specific than that individual organ, modern mass 

spectrometric methods allow for analysis of highly specific regions. In organs such as the 

brain, for example, there is scientific consensus that different regions of the brain perform 

different—albeit integrally interconnected—functions, and accordingly are characterized 

by completely different molecular compositions (see Figure 1). Thus, mass spectrometry 

has played a key role in contemporary studies of the full molecular level of biological 

systems, like in proteomics, lipidomics, and other types of omics. This grants 

comprehension of an ever-increasing extent of regiospecific molecular phenomena in the 

brain. 

 

The Problem 

The abundance and spatial 

significance of these data, however, are 

accompanied by inherent challenges. The 

sheer quantity of data produced from 

mass spectrometry of an individual tissue 

sample can be intractable. In essence, the 

result of a mass spectrometry scan is a 

three-dimensional tensor composed of 

millions upon millions of numeric 

entries, a scale that quickly prohibits 

any practical holistic manual analysis. 

 

Of course, processes still exist 

for deriving pertinent insights from this 

large data set. In many cases, however, 

such methods are difficult, imprecise, 

and/or time-consuming. Furthermore, these methods often run the risk of overlooking 

salient patterns in the data that may prove important in furthering scientific 

comprehension of molecular processes. 

 

As a relevant aside, large-scale data sets like this are nothing new to the modern 

world, where data analysis of even larger data sets than this has become a key aspect of 

operations for many organizations. Developments in the fields of mathematics and 

technology, and in particular of machine learning, have been implemented as a method to 

draw relevant conclusions from massive troves of data. However, applications of these 

modern methods to fields like mass spectrometry are not yet as ubiquitous.  The 

Figure 1: Two images produced from mass 
spectrometry data of the same brain sample, 
each showing the abundance (by ion count 
intensity) of a different molecular mass-to-
charge ratio value. Each image, then, shows 
abundance of a different type of molecule; note 
the differences in abundance between sections 
of the brain for each type. 
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procedure and methodology discuss in this paper merges these mathematically driven 

techniques with the mass spectrometry field.  

 

Addressing the Need 

The core purpose of the activities documented in this paper has been to apply 

technological methods to mass spectrometric data in order to produce a faster and easier 

process of making sense of and managing these sizable data sets. The goal in doing so is 

to eliminate potential inefficiencies and oversights, while adding statistical and 

mathematical rigor to current analytic methods. The intent of this is to stimulate new 

discoveries with far-reaching repercussions in relevant scientific fields. Updated 

technological methods such as these increase the rate at which scientific study can be 

performed.  

 

Turning to the specifics of my work, by identifying specific shortcomings and 

difficulties in the mass spectrometry analysis process of my lab, I significantly sped up 

our existing workflow. To do so, I programmed a script that performed a file conversion 

in a fraction of the time that had previously been required, using inputs that we had 

previously lacked the capability to analyze.  This programming-driven methodology 

paves the way for a more meaningful analysis of the massive spectrometry data.   

 

Furthermore, I used various methods arising from contemporary applications of 

mathematics and machine learning to perform in-depth analysis on our mass 

spectrometry data. Region of interest-based analysis of brain samples is a key area in the 

studies conducted in our biochemistry lab, and the results of my research, in relation to 

these studies, are intriguing. In particular, these results have clear implications in aspects 

of: 1. automated detection of selected regions of interest within brain sample data, 2. 

determining density of specific molecules as a trait of specific regions in the brain, and 3. 

assessment of different brain regionification schemes and resultant increased 

understanding of spatial properties within brain samples. Taken together, these results all 

contribute to an improved understanding of the molecular processes of brain samples, 

adding important observations to the existing body of scientific discovery. 

 

Current Data 

The processes and paradigms 

described here will be specifically described 

in application to desorption electrospray 

ionization (DESI) mass spectrometry, though 

they will have generalized application 

beyond this narrow area. This type of 

spectrometry is effective in determining 

abundance of lipids within tissue samples. 

The tissue on which these samples have been 

performed comes from brains of mice. Our 

biochemistry lab has focused on DESI mass 

spectrometry of mouse brains for years, and studies and publications from these efforts to 

date have yielded fascinating information. Some of the research has been focused on 

Figure 2: A brain sample scan, shown 
with five regions labeled: the left and right 
cortices, left and right caudoputamens, 
and mesencephalon. These labels were 
drawn by hand by a researcher in our lab. 

Brain Scan with Five Regions Labeled 
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Figure 3: A screenshot of Image Inspector, a MATLAB tool developed by BYU faculty to 
visualize mass spectrometric data.  

identifying and comparing specific regions of interest within brains; Figure 2 shows a 

brain scan with such regions highlighted. Some of these investigations involved the use 

of brains from mice treated with deuterated water, resulting in slight differences in the 

m/z values of high-intensity molecules in these scans because of the greater abundance of 

heavy molecular isotopes.  

 

These investigations were generally performed using a Bruker mass spectrometer. Based 

on this, Brigham Young University (BYU) faculty produced a tool in the MATLAB 

programming language capable of visualizing the in-sample intensity of user-specified 

m/z values.7 This tool provided a graphical user interface for researchers to perform 

computer-assisted analysis of molecular abundances within regions of the brain, and 

effectively facilitated enlightening research into various aspects of sample brains. A 

screenshot of this tool in action is shown in Figure 3. 

 

Recently, however, our lab began to use an Agilent mass spectrometer more often 

than using the Bruker machine. The file conversion process that had been used to prepare 

the Bruker output binary files for use in the BYU MATLAB tool, however, involved the 

use of a couple of intermediary third-party file conversion programs, and these were 

incompatible with the output data of the Agilent spectrometer. Thus, in spite of having 

                                                
7 Carson, R.H., Lewis, C.R., Erickson, M.N., Zagieboylo, A.B., Naylor, B.C., Li, K.W., Farnsworth, 
P.B., & Price, J.C. Imaging regiospecific lipid turnover in mouse brain with desorption 
electrospray ionization mass spectrometry. Journal of Lipid Research, 58, 1884-1892 (2017). 
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ready-to-use Agilent spectrometric data, researchers in the lab were unable to use this 

tool for the desired analysis. 

 

Analysis Methods 

This was an area where it was clear that new computational strategies would go a 

long way toward increasing overall effectiveness. We had access to an API for using the 

C++ programming language to access data from the Agilent output files, and I used this 

API to program a script for the mass spectrometry file conversion. The result was a 

program that allowed us to use the MATLAB tool on data that had previously been 

inaccessible. Also, by accessing the data directly through the Agilent API rather than 

using third-party conversion programs, the time required to perform the necessary file 

conversion was drastically decreased. 

 

Though the programming of this script did not constitute analysis in and of itself, 

it did provide a larger set of brain mass spectrometry scans on which to perform research. 

Having example files from two spectrometers helped achieve analysis that was not 

restricted to a single spectrometer’s formatting. With this increased availability of data, I 

began investigating computational analysis methods on the data in question. 

 

I used C++ for the conversion part of the process because it was one of the few 

languages compatible with the Agilent tool; for other parts of the analysis process, I 

worked almost exclusively in the Python programming language. This choice was made 

not only because of Python’s increasing popularity and open-source development 

principles, but also because of a broad range of machine learning tools already available 

from the language. Python also facilitated significant speed in programming and running 

the type of algorithms being implemented. 

 

In general, the analysis I have performed involves a pixel-by-pixel approach to 

the mass spectrometric data. The values returned from the mass spectrometer were in the 

form of a two-dimensional grid subdividing the tissue sample provided. In the case of the 

Agilent machine, a single pixel in this grid was associated with just over 100,000 numeric 

values corresponding to different inferred molecular m/z values. In terms of the 

mathematical analysis, this could be seen as each pixel being a point of a dimensionality 

exceeding 100,000. 

 

For many algorithms, this sort of dimensionality would practically inhibit 

efficient analysis. Aside from that, many of the individual values did not seem to 

contribute much additional information. Intensity values generally followed a peak 

pattern, with neighboring values symmetrically distributed around local maxima. By 

paring the data set down to these centroids, I was able to reduce the dimensionality of the 

problem without losing significant degrees of molecular information. Figure 4 shows one 

such peak, with average intensities for each of the five labeled regions. Figure 6 shows 

the selected peaks from this method. 
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Although this process 

allowed simplified analysis of 

complex data, there were several 

challenges encountered. Figure 5 

shows peaks averaged over the same 

five regions at a different m/z value, 

and it can be seen that the local 

maximum is attained at two 

different m/z values in different 

regions, though the actual difference 

between the average intensity at 

either m/z value across the regions 

was minimal. Because of instances 

like this, it seemed appropriate to 

select m/z values based on an 

average of all in-brain pixels, 

reducing some of the variability 

while not impacting the intensity 

values too significantly. 

 

To restrict the data as 

needed, it was necessary to 

determine which pixels were 

contained within the actual brain 

tissue, as opposed to pixels on the 

edges of the scan.  That challenge 

proved relatively easily 

manageable.  Compared to the 

regions of pixels within the brain, 

the molecular disparities between 

pixels inside and outside the brain 

was stark. A single 

computationally identified m/z 

aspect was generally sufficient to 

differentiate, given a specific 

cutoff, between brain and non-

brain pixels. 

 

Once the data had been 

preprocessed in this way, I was 

able to apply numerous machine learning methods to the data. Each pixel became a 

distinct observation, a data point usable in training a machine learning algorithm. In 

general, machine learning falls into two classes: supervised learning, where the input data 

are given with labels and the program is trained to apply these labels to unlabeled data, 

and unsupervised label, where the data are given without any labels and the program is 

tasked with finding useful categorizations of the data without user-provided labeling. 

Figure 4: The primary phosphatidylserine peak—the 
peak that achieved the maximum mean intensity 
within the sample—in this given brain sample, 
averaged within each of the labeled regions. Note 
how within all regions, the intensity values are 
distributed in a Gaussian-like curve around the main 
peak. 

Figure 5: A lower intensity peak, showing local 
maxima attained at two different points in different 
regions. This occurred frequently with lower intensity 
peaks, where statistical variation resulted in this type 
of discrepancies. This informed my decision to use the 
mean of all in-brain pixels to select m/z values for 
centroids. 
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Over the course of this 

project, I used both 

types of methods to 

analyze the DESI mass 

spectrometric data more 

closely and observe 

what conclusions could 

be drawn. 

 

Supervised 

learning methods were 

useful for analyzing 

existing labeled brain 

scans. These scans had 

certain regions of 

interests demarcated 

(see Figure 2), 

providing labels to be 

used for supervised 

algorithms. These 

algorithms, in turn, often had associated methods for determining feature importance, 

producing quantitative assessments of which molecules might play key roles in different 

regions, since each feature corresponded to a single m/z value. This work also generated 

interesting observations regarding automated identification of the same regions within 

unlabeled scans. 

 

A different utility was observed with unsupervised algorithms. These permitted a 

comparison of the region division scheme we 

used to a scheme generated based solely on 

spectral data properties. These observations 

allowed us to further expand our 

understanding and intuition regarding the 

brain samples in question. 

 

Outcomes—C++ File Conversion 

The C++ script for converting Agilent 

binary files to formats interpretable by the 

BYU MATLAB tool became a useful 

contribution to the lab (see Figure 7). The 

original process involved converting the files 

in question to a .mat MATLAB matrix file, 

which I was able to imitate in a more direct 

process with the C++ API. I also created a 

similar script with the ability to convert files 

into a standard .bin format, anticipating our 

lab’s efforts to move away from MATLAB in 

Figure 7: The conversion processes in 
place for Agilent and Bruker mass 
spectrometry scans, showing the file 
conversions involved and the amount of 
time generally required. 

Figure 6: The centroids used in machine learning investigation of 
the data. The spikes shown are local maxima in intensity, 
graphed at the corresponding m/z value. 



8 
 

favor of more open-source, less expensive alternatives, such as Python, with the intention 

of increasing accessibility for other users. The script is given in Appendix A. 

 

Because of the Component Object Model (COM) framework in which the Agilent 

data access functions were written, it made the coding process significantly simpler to use 

Microsoft Visual Studio’s ATL capabilities in this script. This dependency runs counter 

to our lab’s effort to make code more open source and accessible, but has so far not 

caused any significant issues. Since using these tools helps with code simplicity and 

readability, we are currently accepting the tradeoff. 

 

Unsupervised Machine Learning 

There are a variety of unsupervised machine learning algorithms developed with 

the express purpose of “clustering” similar data points into categories. I attempted using a 

variety of such algorithms, in order to see what these algorithms might reveal regarding 

“natural” regions within the brain based solely on mass spectrometry data. Thus, these 

algorithms were given intensities of hundreds of centroids, but not the location of the 

pixel on the brain. The results of this analysis are given in Figure 8, showing a variety of 

results for the problem of identifying regions. 

 

These clustering algorithms use various paradigms to perform group 

categorization. Affinity propagation works by identifying several data points, labeled as 

exemplars, and grouping according to similarity to these.8 Spectral clustering uses the 

eigensystem of the data points to effectively perform dimension reduction and find 

similar data points in the projected data;9 this method is related to the partitioning 

algorithm used in density-based spatial clustering of applications with noise (DBSCAN), 

which adds a criterion analyzing the density of data in groups in order to assign 

categories and reduce sensitivity to noise.10 Balanced iterative reducing and clustering 

using hierarchies (BIRCH) also uses a subdivision scheme to reduce sensitivity to noise, 

but does so while implementing a hierarchical algorithm, as is used in agglomerative 

clustering, to label points close to each other as such using a distance metric.11 The mean 

shift algorithm works by finding the maxima of a density function of data points and 

using it to categorize them.12 

 

 

 

                                                
8 Dueck, D. & Frey, B. Non-metric affinity propagation for unsupervised image categorization. 
Proceedings: IEEE International Conference on Computer Vision 11, 1-8 (2007). 
9 Pothen, A., Simon, H.D & Liou, K. Partitioning Sparse Matrices with Eigenvectors of Graphs. 

SIAM J. Matrix Anal. Appl., 11:3, 430–452 (1989). 
10 Ester, M., Kriegel, H., Sander, J. & Xu, X. A Density-Based Algorithm for Discovering Clusters 
in Large Spatial Databases with Noise. Proceedings: Int’l Conf. on Knowledge Discovery, Data 
Mining 2, 226-231 (1996). 
11 Zhang, T., Ramakrishnan, R. & Livny, M. BIRCH: an efficient data clustering method for very 
large databases. Proceedings: ACM SIGMOD Int’l Conference on Management of Data 22, 103-
114 (1996). 
12 Fukunaga, K. & Hostetler, L. The estimation of the gradient of a density function, with 
applications in pattern recognition. IEEE Transactions on Information Theory 21, 32-40 (1975). 
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Unsupervised Learning on Brain Scan Data 

Affinity 

Propagation 

Spectral 

Clustering 

Agglomerative 

Clustering 

DBSCAN BIRCH Mean Shift 

      

It is interesting to note the variety of results derived from applying different 

algorithms to the data. In the case of the affinity propagation result, for example, the 

brain was split into over one hundred categories, too many to be reasonably used. On the 

other hand, the mean shift and DBSCAN algorithms determined that all in-brain pixels 

were too similar to split into any different categories. Out of these, the BIRCH and 

agglomerative clustering results are of particular interest. The similar patterns shown in 

these are relatively simple and show some bilateral symmetry, which should be expected 

from the brain. This inspires some confidence that the methods might be capturing real 

and interesting trends. 

 

For the most part, nevertheless, these results failed to yield particularly salient 

features that seem to meaningfully reflect molecular compositions in the brain. In order to 

further investigate these procedures, some feature engineering of the data was needed. In 

particular, after running the same algorithms with mean-adjusted pixel values, wherein 

each intensity value was divided by its mean intensity within the brain, some different 

results were obtained. These results are displayed in Figure 9. A result of particular 

interest in this rendition is the one yielded by the BIRCH algorithm. Note the symmetry 

in this outcome, as well as the relative visibility of what appears to be the corpus 

callosum, along with other brain features. 

 

 

 

 

 

 

 

Figure 8: The results of a variety of unsupervised clustering algorithms applied to the same 
mass spectrometry sample. 
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Figure 9: The results of the same unsupervised clustering algorithms applied to the mass 
spectrometry sample, but using mean-adjusted intensities. 

Unsupervised Learning on Mean-Adjusted Brain Scan Data 

Affinity 

Propagation 

Spectral 

Clustering 

Agglomerative 

Clustering 

DBSCAN BIRCH Mean Shift 

      

 

 

Supervised Machine Learning 

It was also enlightening to see the results of a variety of supervised machine 

learning algorithms that were applied to the same data set. For the purposes of this 

experimentation, the following four labels were applied: “cortex”, “caudoputamen”, 

“middle” (mesencephalon), and “brain - other”, 

based on the labels that had been manually applied 

to the mass spectrometry scans. This labeling 

permitted investigation into different assessments 

of feature importance for their labeling, with 

implications in learning defining molecular 

characteristics of the regions of interest in 

question, as well as the potential to perform future 

labelings computationally and automatically. 

 

One common algorithm for such 

categorization problems is multinomial logistic 

regression, also known as softmax regression. This 

type of regression works by determining log-

likelihood of a linear predictor function with 

some weighted combination of the features to be 

categorized, and is a generalization of logistic 

regression, a fitting scheme that uses a derivation 

of the logistic function to categorize data into 

Figure 10: From left to right: 1) The 
original labeling provided, 2) the 
labeling generated by the softmax 
algorithm, and 3) comparing the 
labelings, with discrepancies 
highlighted in yellow. 

  Original          Machine-          Labeling 
   Image            Labeled       Discrepancies 
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two classes at a given cutoff.13 Figure 10 shows the results of this algorithm, run on a 30-

70 train-test split of the original data. The resulting labeling is just under 90% accuracy, 

appearing as shown in the figure. 

 

The softmax algorithm also provides a framework for extrapolating feature 

importance, in terms of identification of each of the categories assigned to it. In the 

context of this problem, this indicates the m/z values corresponding to the intensities that 

the algorithm determined were most useful in identifying each type of region. The results 

of this are shown in Appendix B, along with comparisons of results from other methods. 

In most of the images shown, some of the regions of interest from the labeling are fairly 

visible. This provides an interesting starting point for investigations of lipids abundant in 

these regions. 

 

This algorithm, however, is not the only algorithm used in modern classification 

problems, and in fact, many modern classification methods rely on random forest 

algorithms, instead. In order to gain a broader perspective on this task with regard to 

machine learning, I applied both a standard random forest and an XGBoost forest method 

to the relevant data. These algorithms are ensembles of decision trees, which iteratively 

take a single feature, determine a cutoff for that feature, and assign a category based on 

that. Random forests create a large random group of such decision trees, which tends to 

converge to a desirable categorization scheme, whereas XGBoost selects such trees based 

on defining an objective function and choosing 

trees that optimize it.14 Each of these algorithms 

has an out-of-bag feature importance 

determination method, which was used to 

determine which m/z values were the most 

predictive in identifying regions. The graphical 

results of this can be seen in Appendix B. The 

XGBoost algorithm resulted in a higher accuracy 

30-70 train-test result than the random forest 

algorithm, a visual representation of which is 

given in Figure 11. 

 

Another algorithm often used for 

categorization problems like this is principal 

component analysis (PCA). This method selects 

principal axes in high-dimensional space to 

separate categories on, rather than retaining the 

mindset that each feature is an axis. The PCA 

algorithm is a dimension reduction algorithm 

used to project high-dimensional data into lower-

                                                
13 Böhning, D. Multinomial logistic regression algorithm. Ann. Inst. Statist. Math. 44:1, 197-200 
(1992). 
14 XGBoost documentation: Introduction to Boosted Trees (2016). 
https://xgboost.readthedocs.io/en/latest/tutorials/model.html 

  Original          Machine-          Labeling 
   Image            Labeled       Discrepancies 

Figure 11: From left to right: 1) The 
original labeling provided, 2) the 
labeling generated by the XGBoost 
algorithm, and 3) comparing the 
labelings, with discrepancies 
highlighted in yellow. 

https://xgboost.readthedocs.io/en/latest/tutorials/model.html
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dimension spaces15, and even a single dimension of this algorithm achieved a 78% rate of 

variance prediction, with rapid decline in accuracy gains from added dimensions. The 

m/z values identified as most predictive with this method are also given in Appendix B. 

 

As a final note, I also performed experimentation into using these algorithms to 

train an algorithm on multiple labeled spectrometry files, then using the trained models to 

identify labels on an input file without any same-file labels given, to see the potential for 

automatic region identification. Initial efforts into this yielded essentially no predictive 

power for identifying regions of interest; spectral differences between individual files 

appeared to be too great to use for training, after only simplistic data engineering. It 

seems likely that this type of supervised labeling will eventually be practicable, but may 

require further standardizations in the spectral data. 

 

Conclusions 

The results of the C++ script using Agilent’s API to expedite the file conversion 

process were successful and promising. Being able to perform the same conversion and 

adjustment process in a shorter period of time with less manual effort is exciting. It serves 

as an indication of the extent that technology can be helpful in performing useful 

scientific tasks. Using methods that are as up-to-date as possible can pay long-term 

dividends in terms of time required for conducting research. 

 

In investigating the unsupervised learning algorithms on the sample data, it may 

be said that the initial hypothesis was that methods like this can be used to effectively 

identify regions of interest like the ones we were investigating. The actual results, in 

many cases, differed from the base expectation; many identified non-contiguous regions 

or no regions at all. This seems to speak to the molecular complexity of the brain; though 

there are certainly noticeable divisions between sections, some of these may not be 

extremely well defined in terms of their component molecules, or at least in terms of their 

lipids. 

 

Still, some promise was shown, particularly in the BIRCH analysis of mean-

adjusted intensities. This may mean that clustering algorithms like BIRCH have the 

potential to yield regional divisions like those shown in the labeled data, perhaps given 

the right initial feature engineering. This would be significant, since the initial labeling of 

the data is still prone to human error; a more mathematically rigorous system of region 

identification would be useful. 

 

Nevertheless, assuming that the human-labeled data are generally accurate with a 

few overall mistakes, the supervised approach seems to be a useful direction. The most 

interesting takeaways from these methods, however, did not come from automated 

identification of brain sample regions. It was more interesting to investigate the feature 

importance assigned by machine learning algorithms to the input data. 

 

                                                
15 Hotelling, H. Analysis of a complex of statistical variables into principal components. Journal of 
Educational Psychology 24, 417–441 (1933). 
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By using the feature importance methods associated with each supervised 

algorithm, I was able to gain a significant list of m/z values that may be predictive in 

identifying the regions in which our lab has been interested. These preliminary results 

have given us a set of information to look into to investigate different molecular species, 

painting a more detailed picture of the molecular abundances and processes that occur in 

these brain regions. Our lab has begun investigating some of these results. 

 

It may accurately be noted that the centroid analysis I used for this investigation 

was rather simplistic, simply identifying local maxima to identify peaks of spectra. The 

third, fourth, and fifth entries in the XGBoost column of Appendix B demonstrate the 

implications of this type of analysis; it seems that all three of these are likely the same 

molecule, but with different amounts of heavy isotopes of constituent elements. It may 

yield even more intriguing information to further hone this analysis by identifying 

particular molecular species, as well as the multiple peaks associated with different 

isotopic configurations of the same molecule. I did not include this level of preprocessing 

in my analysis, in favor of using a simpler method, as well as approaching the initial data 

with a more minimal amount of assumptions for initial experimentation. In the future, I 

may identify molecule packages across multiple associated peaks, and perhaps analyze 

ratios between peaks as well as overall intensity. 

 

This paper has explored the idea that application of modern computational 

principles would make large spectrometry brain data sets more manageable and useful.  

This included both fast processing of mass spectrometer data and automated analysis of 

that data after preprocessing.  The programming principles applied did, in fact, reduce 

and simplify data, though the predicted detectable patterns were not always as 

anticipated.  Whereas many algorithmic models did not immediately reveal patterns from 

the simplified data, some did show some promise for using spectral data to identify and 

analyze regions of interest in a fast, automatic way. This should serve as a new and 

powerful tool to continue to identify and interpret molecular patterns in the brain.    
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Appendix A: Agilent Data Conversion Code 

 

The following is the script used to leverage Agilent’s API and convert the data 

directly to the desired format. This particular iteration of the program formats the output 

as a generic .bin file, which was not originally supported in the Image Inspector 

MATLAB tool, though with a couple of tweaks, the MATLAB tool now reads these 

correctly. Other researchers are working on a Python port to support potential users who 

benefit from the use of an open-source language, and it is anticipated that this .bin output 

format will be more helpful for that. 

 

This is a single sample of the code used for this project. Further code samples 

may be found in the GitHub repository at the following link: 

https://github.com/aahlstrom1. 

 

Agilent .d to .bin converter: 

 
#include <assert.h> 
#include <atlbase.h> 
#include <filesystem> 
#include <iostream> 
#include <shobjidl.h> 
#include <string> 
#include <vector> 
#include <windows.h> 
 
// These files contain the Agilent mass spectrometry data access functions. 
#import "BaseCommon.tlb" raw_interfaces_only, no_namespace, named_guids 
#import "BaseDataAccess.tlb" raw_interfaces_only, rename_namespace("BDA"), named_guids 
#import "MassSpecDataReader.tlb" raw_interfaces_only, no_namespace, named_guids 
 
namespace fs = std::experimental::filesystem; 
 
std::vector<std::wstring> getFoldersFromUserSpecifiedDirectory(); 
CComBSTR* sortFoldersByNumberInPath(std::vector<std::wstring> list, int size); 
float* generateAxisArray(int length, int pixelSize); 
 
int main() 
{ 
    CoInitialize(NULL); 
    HRESULT hr = S_OK; 
 
    int current = 0, pixelSizeX = 0, pixelSizeY = 0, xSize = 0, ySize = 0, zSize = 0; 
    LONG lBound, uBound, count; 
    float *matrix; 
    double *zVals; 
    const int FLOAT_SIZE = 4, MAX_FILE_NAME_SIZE = 200; 
    bool matrixDefined = false; 
    std::vector<float> v; 
    char* filename = new char[MAX_FILE_NAME_SIZE]; 
 
    std::cout << "Enter desired output file name (without file type extension, " << 
            "e.g. 'file' will output to 'file.bin')" << std::endl; 
    std::cin >> filename; 
    std::strcat(filename, ".bin"); 
    std::cout << "Enter integer lengths for pixel width and pixel height." << std::endl; 
    std::cout << "Then, select the directory to read spectral data from." << std::endl; 
    std::cout << "Enter pixel width: "; 
    std::cin >> pixelSizeX; 

https://github.com/aahlstrom1
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    std::cout << "Enter pixel height: "; 
    std::cin >> pixelSizeY; 
 
    std::vector<std::wstring> spectrumFiles = getFoldersFromUserSpecifiedDirectory(); 
    ySize = spectrumFiles.size(); 
    CComBSTR *filePaths = sortFoldersByNumberInPath(spectrumFiles, ySize); 
 
    FILE* pFile; 
    pFile = fopen(filename, "wb"); 
 
    for (int path = 0; path < ySize; path++) { 
        std::cout << "Reading path " << path + 1 << " of " << ySize << "\r"; 
        CComPtr<IMsdrDataReader> pMSDataReader; 
        hr = CoCreateInstance(CLSID_MassSpecDataReader, NULL, CLSCTX_INPROC_SERVER, 
            IID_IMsdrDataReader, (void**)&pMSDataReader); 
        assert(hr == S_OK); 
 
        VARIANT_BOOL pRetVal = VARIANT_TRUE; 
        hr = pMSDataReader->OpenDataFile(filePaths[path], &pRetVal); 
        assert(hr == S_OK); 
 
        CComPtr<BDA::IBDAChromData> pChromData; 
        hr = pMSDataReader->GetTIC(&pChromData); 
        assert(hr == S_OK); 
 
        long dataPoints = 0; 
        hr = pChromData->get_TotalDataPoints(&dataPoints); 
        if (xSize == 0) 
            xSize = dataPoints; 
        assert(hr == S_OK); 
 
        for (int scan = 0; scan < xSize; scan++) { 
 
            v.clear(); 
 
            if (scan < dataPoints) { 
                CComPtr<BDA::IBDASpecFilter> specFilter; 
 
                hr = CoCreateInstance(BDA::CLSID_BDAChromFilter, NULL, 
                    CLSCTX_INPROC_SERVER, 
                    BDA::IID_IBDAChromFilter, 
                    (void**)&specFilter); 
                assert(hr == S_OK); 
 
                CComPtr<BDA::IBDASpecData> spectrum; 
                hr = pMSDataReader->GetSpectrum_6(scan, NULL, NULL, &spectrum); 
 
                if (hr == S_OK) { 
                    float* yArray = NULL; 
                    SAFEARRAY *safeYArray = NULL; 
                    hr = spectrum->get_YArray(&safeYArray); 
                    assert(hr == S_OK); 
                    SafeArrayGetLBound(safeYArray, 1, &lBound); 
                    SafeArrayGetUBound(safeYArray, 1, &uBound); 
                    SafeArrayAccessData(safeYArray, reinterpret_cast<void**>(&yArray)); 
 
                    v.assign(yArray, yArray + uBound - lBound + 1); 
                    SafeArrayUnaccessData(safeYArray); 
 
                    if (!matrixDefined) { 
                        assert(scan == 0); 
                        zSize = v.size(); 
                        ySize -= path; 
                        matrix = new float[ySize * xSize * zSize]; 
                        matrixDefined = true; 
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                        double* xArray = NULL; 
                        SAFEARRAY *safeXArray = NULL; 
                        hr = spectrum->get_XArray(&safeXArray); 
                        assert(hr == S_OK); 
                        SafeArrayGetLBound(safeXArray, 1, &lBound); 
                        SafeArrayGetUBound(safeXArray, 1, &uBound); 
                        SafeArrayAccessData(safeXArray, reinterpret_cast<void**>(&xArray)); 
                        zVals = new double[zSize]; 
                        std::copy(xArray, xArray + zSize, zVals); 
                        float x_ptr = (float)xSize; 
                        float y_ptr = (float)ySize; 
                        float z_ptr = (float)zSize; 
 
                        fwrite(&x_ptr, FLOAT_SIZE, 1, pFile); 
                        fwrite(&y_ptr, FLOAT_SIZE, 1, pFile); 
                        fwrite(&z_ptr, FLOAT_SIZE, 1, pFile); 
                    } 
 
                } 
            } 
 
            if (matrixDefined) { 
                v.resize(zSize, 0); 
                copy(v.begin(), v.end(), matrix + current); 
                fwrite(&v[0], FLOAT_SIZE, v.size(), pFile); 
                current += zSize; 
            } 
        } 
    } 
 
    float *xVals, *yVals, *start_of_pr; 
    v.clear(); 
 
    xVals = generateAxisArray(xSize, pixelSizeX); 
    yVals = generateAxisArray(ySize, pixelSizeY); 
    for (int i = 0; i < zSize; i++) { 
        v.push_back((float)zVals[i]); 
    } 
    fwrite(xVals, FLOAT_SIZE, xSize, pFile); 
    fwrite(yVals, FLOAT_SIZE, ySize, pFile); 
    fwrite(&v[0], FLOAT_SIZE, v.size(), pFile); 
 
    fclose(pFile); 
 
    std::cout << "Done. Results have been written to file: " << filename << std::endl; 
 
    system("Pause"); 
    return 0; 
} 
 
std::vector<std::wstring> getFoldersFromUserSpecifiedDirectory() { 
    std::vector<std::wstring> folders; 
    IFileDialog *pfd = NULL; 
    DWORD dwOptions; 
    IShellItem *psiResult; 
    PWSTR pszFilePath = NULL; 
    HRESULT hr = CoCreateInstance(CLSID_FileOpenDialog, 
        NULL, 
        CLSCTX_INPROC_SERVER, 
        IID_PPV_ARGS(&pfd)); 
    assert(SUCCEEDED(hr)); 
 
    if (SUCCEEDED(pfd->GetOptions(&dwOptions))) 
        pfd->SetOptions(dwOptions | FOS_PICKFOLDERS); 
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    hr = pfd->Show(NULL); 
    assert(SUCCEEDED(hr)); 
 
    hr = pfd->GetResult(&psiResult); 
    assert(SUCCEEDED(hr)); 
    hr = psiResult->GetDisplayName(SIGDN_FILESYSPATH, &pszFilePath); 
    assert(SUCCEEDED(hr)); 
 
    std::wstring ws(pszFilePath); 
    std::wstring directoryPath(ws.begin(), ws.end()), directoryContent; 
 
    for (const auto & p : fs::directory_iterator(directoryPath)) { 
        directoryContent = p.path().wstring(); 
        if (directoryContent.substr(directoryContent.length() - 2) == L".d") { 
            folders.push_back(directoryContent); 
        } 
    } 
    return folders; 
} 
 
CComBSTR* sortFoldersByNumberInPath(std::vector<std::wstring> list, int size) { 
    CComBSTR* folders = new CComBSTR[size]; 
    int position, index; 
    for (std::wstring p : list) { 
        position = p.length() - 3; 
        while (p[position] >= '0' && p[position] <= '9') { 
            position--; 
        } 
        index = stoi(p.substr(position + 1, p.length() - 3 - position)); 
        folders[index - 1] = SysAllocStringLen(p.data(), p.size()); 
    } 
 
    return folders; 
} 
 
float* generateAxisArray(int length, int pixelSize) { 
    float* vals = new float[length]; 
    float currentVal = pixelSize / 2; 
    for (int i = 0; i < length; i++) { 
        vals[i] = currentVal; 
        currentVal += pixelSize; 
    } 
    return vals; 
} 
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Appendix B: Supervised Learning Selected Features 

 

This appendix consists of the results of a variety of machine learning algorithms. 

Using each algorithm’s feature importance measure, the following m/z values were 

extracted as particularly predictive. The first table shows the results of softmax 

regression, and the second compares the results of a standard random forest, XGBoost, 

and the first dimension of a principal component analysis. 

 

Ostensible 

Importances 

Softmax Analysis 

Caudoputamen Cortex Middle Brain - other 

Most important 

    

2nd-most 

important 
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3rd, etc. 

    

4 

    

5 
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6 

    

7 

    

8 
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9 

    

10 

    

 

 

 Random Forest XGBoost PCA (first 

dimension) 

Most important 
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2nd-most important 

   

3rd, etc. 

   

4 
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5 

   

6 

   

7 
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10 
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