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Dynamical importance and network perturbations
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The leading eigenvalue λ of the adjacency matrix of a graph exerts much influence on the behavior of
dynamical processes on that graph. It is thus relevant to relate notions of importance of network structures to λ

and its associated eigenvectors. We study a previously derived measure of edge importance known as “dynamical
importance,” which estimates how much λ changes when one removes an edge from a graph or adds an edge
to it. We examine the accuracy of this estimate for several undirected network structures and compare it to
the relative change in λ after an edge removal or edge addition. We then derive a first-order approximation of
the change in the leading eigenvector. We also consider the effects of edge additions on Kuramoto dynamics on
networks, and we express the Kuramoto order parameter in terms of dynamical importance. Through our analysis
and computational experiments, we find that studying dynamical importance can improve understanding of the
relationship between network perturbations and dynamical processes on networks.
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I. INTRODUCTION

The study of dynamical processes on graphs and other net-
works is important for many applications, which range from
disease spread in populations to the collective behavior of
neurons in biological neural networks [1,2]. A major research
direction is the examination of how dynamical processes are
affected by network architecture. Consider a network in the
form of a graph, in which nodes are connected pairwise
(i.e., dyadically) by edges. There is an intimate relation-
ship between a graph’s structure and the spectral properties
(i.e., the eigenvalues and associated eigenvectors) of its ad-
jacency matrix A (and other matrices, such as Laplacian
matrices) [3].

The leading eigenvalue (i.e., the eigenvalue with the largest
magnitude) λ of A determines fundamental properties of many
dynamical processes on graphs [2–4]. For example, under
certain assumptions, the critical coupling strength for the
transition to synchrony in the Kuramoto model [5] of cou-
pled oscillators and in networks of other coupled dynamical
systems [6] is proportional to λ. Additionally, 1/λ gives an
estimate of an epidemic threshold for many compartmental
models of disease spread on graphs [7]. Relatedly, the perco-
lation threshold for the appearance of a giant component on a
graph also involves 1/λ [8].

In light of the above connections to dynamics, it is relevant
to characterize the importances of a graph’s nodes and edges
using spectral properties of A. Determining the importances
(i.e., centralities) of network nodes, edges, and other sub-
graphs is relevant for ranking and other applications [2], such
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as removing specific nodes and edges to contain the spread of
an infectious disease [9], reach a percolation threshold [10],
or minimize congestion in a queueing network [11]. One
can express many centrality measures in terms of the
leading right eigenvector v of A. The prototypical exam-
ple of such an eigenvector-based centrality is eigenvector
centrality [12]. Other eigenvector-based centralities include
PageRank [13], hub and authority scores [14], and generaliza-
tions of such centrality measures in multilayer and temporal
networks [15–17].

In this paper, we examine dynamical importance [5], which
is a centrality measure that estimates how much λ changes
due to network perturbations. Using dynamical importance,
we compare the effects of edge removals and edge additions
(i.e., two different types of network perturbations [18]) on
λ for several families of graphs. We then examine network
perturbations for the Kuramoto model (which is a system
of coupled phase oscillators) on graphs [19]. Under certain
assumptions, the Kuramoto model’s critical coupling strength,
which determines when coupled phase oscillators start to syn-
chronize, is inversely proportional to λ [5].

Our paper proceeds as follows. In Sec. II, we review
dynamical importance, compare it to the relative change
in λ for network perturbations, and discuss its accuracy.
In Sec. III, we examine dynamical importance from the
perspective of the corresponding change in the leading
eigenvector of an undirected graph’s adjacency matrix. In
Sec. IV, we use dynamical importance to study the effects
of network perturbations on the order parameter of the Ku-
ramoto model on graphs with approximately homogeneous
degree distributions. Finally, in Sec. V, we conclude and
discuss future research directions. In the appendices, we pro-
vide a few additional details about some assumptions and
other relevant considerations. In our code repository [20],
we provide software to compute dynamical importance and
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TABLE I. Summary of our key mathematical notation.

Notation Meaning

�x True change in x
δx First-order approximation of �x
x́ x + �x
x̀ x + δx
ŷ Quantity computed using �x
y̌ Quantity computed using δx

iteratively add edges with the largest dynamical importance to
a graph.

II. DYNAMICAL IMPORTANCE

We begin by reviewing dynamical importance. To aid our
presentation, we summarize our key mathematical notation in
Table I.

Given a strongly connected graph (i.e., there is a path from
each node to each other node) G with adjacency matrix A,
leading eigenvalue λ, leading left eigenvector u, and leading
right eigenvector v, the dynamical importance [21] of the edge
i → j is

ιi j = Ai juiv j

λuT v
. (1)

Equation (1) arises from the removal or addition of a single
edge.

By the Perron–Frobenius theorem for non-negative matri-
ces [22], the leading eigenvalue λ is real and positive, the
entries of u all have the same sign, and the entries of v all have
the same sign. Without loss of generality, we take the entries
of u and v to be non-negative. We also assume that (1) the
graph G is strongly connected and (2) the graph perturbation
has a small effect on λ and its associated eigenvectors for
graphs with N � 1 nodes.

We start by deriving a first-order approximation of the
change [�λ]i j in λ after the removal or addition of the edge
i → j. The eigenvalue equation for the left and right eigen-
vectors is

uTAv = λuT v . (2)

We use perturbation theory to approximate how much λ

changes due to edge removals. Let A + �A denote the new
adjacency matrix after the edge removal. Let λ + �λ denote
the associated change in λ, let u + �u denote the change in
u, and let v + �v denote the change in v. The eigenvalue
equation for the perturbed system is

(u + �u)T (A + �A)(v + �v)

= (λ + �λ)(u + �u)T (v + �v) . (3)

We expand (3) and ignore higher-order terms (i.e., terms that
are cubic or have higher powers) to obtain

uT �A v = �λ uT v + higher-order terms . (4)

We divide the retained terms by uT v to isolate �λ and obtain

�λ = uT �A v

uT v
. (5)

For the removal of the edge i → j, we have

[�λ]i j = ui[�A]i jv j

uT v
. (6)

Because [�A]i j = −Ai j , it follows that

[�λ]i j = −Ai juiv j

uT v
. (7)

We now derive the dynamical importance ιi j of the edge
i → j for edge removals. It is given by the relative eigenvalue
change

ιi j = −[�λ]i j

λ
, (8)

where [�λ]i j is defined in (7), we have normalized by
the leading eigenvalue λ, and the factor −1 ensures non-
negativity. For edge additions, we do not have the factor −1.
Inserting (7) into (8) yields

ιi j = Ai juiv j

λuT v
. (9)

Henceforth, we only consider graphs that are undirected
and unweighted. For undirected graphs, the subscript i j de-
notes the bidirectional edge i ↔ j (which we also denote by
ei j for convenience), which includes both i → j and j → i.
There are two associated 1 entries in the perturbation matrix
�A. We thus have

ιi j = uiv j + u jvi

λuT v
. (10)

The symmetry of A implies that A and AT have the same
eigenvalues and that u = vT . Therefore,

ιi j = 2viv j

λvT v
. (11)

We refer to ιi j as the “first-order edge dynamical importance”
(FoEDI). The eigenvector v has strictly positive entries, so
ιi j > 0.

One can also use (11) to help select which edge (for edge
removals) or nonedge (for edge additions) most increases or
most decreases λ. We select one edge at a time, and we use the
following procedure (see Algorithm 1) to select edges to add
to maximize FoEDI. (We use an analogous procedure to select
edges to remove to maximize FoEDI.) Given a graph G with
associated adjacency matrix A, the complement graph GC is a
simple graph [23] that consists of all of the edges (except for
self-edges) that are not in G. The adjacency matrix AC of GC

is the complement of A and swaps the 0 entries and 1 entries
of A (except for still having 0 values on the diagonal). We
compute ιi j for each nonedge of G (i.e., for each edge of GC)
and return the nonedge with the edge index that is associated
with the largest ιi j .

Using FoEDI also recovers the Rayleigh quotient
vTAv/(vT v) = λ. See Appendix A for the derivation. This
presents opportunities to connect dynamical importance with
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ALGORITHM 1. Adding edges that maximize the first-order
edge dynamical importance ιi j .

eigenvalue perturbation theory [24] (e.g., eigenvalue elastic-
ity). However, many techniques from eigenvalue perturbation
theory consider very small perturbations (e.g., slightly chang-
ing the weight of an edge in a weighted network), rather than
perturbations that change a 1 into a 0 (or vice versa) in one
entry of an unweighted adjacency matrix A [25,26].

Comparison to the relative eigenvalue change �λ/λ

In Figs. 1 and 2, we compare FoEDI to �λ/λ for several
graphs. We consider single instantiations of four different
types of graphs, which are discussed in detail in the textbook
[2]. The first graph is a G(N, p) Erdős–Rényi (ER) graph with
N = 200 nodes and connection probability p = 0.15. The
second graph is a Barabási–Albert (BA) graph that we initial-
ize using a single isolated node. The preferential-attachment
power is 4, and we add five edges at each discrete time step.
The third graph is a Watts–Strogatz (WS) graph in which
each node is initially adjacent to its k = 4 nearest neighbors
and the rewiring probability is 0.05. The fourth graph is a
stochastic-block-model (SBM) graph with two G(100, 0.2)
ER blocks and an independent probability 0.01 of each edge
between nodes in different blocks.

We show our results for edge removals in Fig. 1 and our
results for edge additions in Fig. 2. We see that FoEDI always
overestimates �λ/λ for edge removals and always under-
estimates �λ/λ for edge additions. The difference between
FoEDI and the relative eigenvalue change �λ/λ decreases as
we increase the numbers of nodes and edges of a graph. In our
experiments, this difference is typically negligible. However,
this difference is not negligible for additions and removals
of nodes. For node dynamical importance, the differences
between �λ/λ and approximations of it using dynamical
importance are significant enough to warrant refining the

FIG. 1. We show the first-order edge dynamical importance (FoEDI) (dashed blue curves) and �λ/λ (solid red curves) for edge removals
in various 200-node graphs. We order the curves for FoEDI and �λ/λ by increasing value of FoEDI. The horizontal axis is the edge index. We
plot results for graphs that we construct using (top left) the Erdős–Rényi (ER) model, (top right) the Barabási–Albert (BA) model, (bottom left)
the Watts–Strogatz (WS) model, and (bottom right) a stochastic block model (SBM). We describe the parameters of each model in the main
text. We use a single instantiation of each type of graph. In each panel, the number of data points equals the number of edges in the associated
graph. The relative error is ‖x − y‖2/‖x‖2, where ‖ · ‖2 is the �2 norm, x is the vector of measured values, and y is the vector of true values.
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FIG. 2. We show the FoEDI (dashed blue curves) and �λ/λ (solid red curves) for edge additions. We order FoEDI and �λ/λ by increasing
FoEDI. We show results for (top left) an ER graph, (top right) a BA graph, (bottom left) a WS graph, and (bottom right) an SBM graph. The
random-graph realization in each panel is the same as in the corresponding panel of Fig. 1.

approximation (e.g., by including second-order terms) to im-
prove its accuracy [27,28].

As we illustrate in Figs. 1 and 2, FoEDI estimates �λ/λ

very accurately for some network models (e.g., ER, BA,
and SBM graphs), so higher-order approximations will not
meaningfully improve accuracy over ιi j . By contrast, FoEDI
is noticeably inaccurate in its estimate of �λ/λ for our WS
graph. Nevertheless, computing FoEDI still provides a helpful
estimate even for this example.

We outline a simple, though computationally expensive,
edge-addition procedure using FoEDI. In Fig. 3, we plot
the standard deviation σd of the graph degree distribution
as a function of the number of edges that we add using
Algorithm 1. In Fig. 7 in Appendix B, we show how λ

increases as we add edges to each graph. The roughly semicir-
cular curve of σd for each graph suggests that initially nodes
with large degree tend to accrue edges before other nodes.
Subsequently, there is not a clear trend in which nodes ob-
tain new edges. Additionally, it is well-known that λ � dmax,
where dmax is the maximum degree of a graph [3].

III. ESTIMATING THE EIGENVECTOR CHANGE �v

We now derive an approximation of the change �v in the
leading eigenvector of G. Consider the expression for FoEDI
in (11), and recall that u = vT for an undirected graph. The
denominator in (11) is constant, so the FoEDI of each edge ei j

is determined by the product viv j of the eigenvector entries.
Motivated by this product, we examine how much v differs
from v + �v by estimating �v for a graph perturbation.

To approximate �v, we use the same technique as in our
derivation of FoEDI. We begin with the eigenvalue equation

Av = λv . (12)

We perturb (12) and write

(A + �A)(v + �v) = (λ + �λ)(v + �v) . (13)

Expanding (13) and ignoring terms of second and higher
orders yields

Av + A �v + �A v = λv + λ �v + �λ v , (14)

which we simplify to obtain

�A v − �λ v = λ �v − A �v . (15)

Therefore,

(�A − �λ I )v = (λI − A)�v , (16)

where I is the N × N identity matrix. We cannot compute
the inverse of λI − A because it is singular. Therefore, we
instead compute the Moore–Penrose generalized inverse [29].
Let D́ = �A − �λ I , and let D = λI − A. To compute D́, we
use the approximation

ι
†
i j = 2viv j

vT v
(17)

of �λ. The quantity ι
†
i j is the unnormalized FoEDI.

We seek a first-order approximation δv of �v. We have

(λI − A)δv = (�A − �λ I )v . (18)
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FIG. 3. The standard deviation σd of the degree distribution of a graph G as we add edges ei j , one by one, that maximize ιi j . The horizontal
axis is the number of edges that we add from the complement graph GC . We show results for (top left) an ER graph, (top right) a BA graph,
(bottom left) a WS graph, and (bottom right) an SBM graph. The random-graph realization in each panel is the same as in the corresponding
panel of Fig. 1.

Solving for δv yields

δv = DGD́v , (19)

where DG denotes the Moore–Penrose generalized inverse of
D. In Figs. 4 and 5, we plot the relative error between the
approximation δv and the true change �v for the graphs from
Fig. 1. We show our results for edge removals in Fig. 4 and
our results for edge additions in Fig. 5. In both figures, the
relative error is particularly large for the WS graph.

Computing δv using Eq. (19) is computationally expensive
[30], but this expression is useful because we can determine
δv for any graph perturbation. We can also use δv to approx-
imate FoEDI after a perturbation. Let v̀ denote v + δv. Using
Eq. (17), we obtain

ι̌
†
i j = 2v̀iv̀ j

v̀T v̀
. (20)

FIG. 4. The relative error between δv and �v for edge removals. The horizontal axis is the index of the edge, and the vertical axis is
the relative error. We order the edge indices by increasing value of the relative error. We show results for (top left) an ER graph, (top right)
a BA graph, (bottom left) a WS graph, and (bottom right) an SBM graph. The random-graph realization in each panel is the same in the
corresponding panel of Fig. 1.
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FIG. 5. The relative error between δv and �v for edge additions. The horizontal axis is the index of the edge, and the vertical axis is the
relative error. We order the edge indices by increasing value of the relative error. We show results for (top left) an ER graph, (top right) a
BA graph, (bottom left) a WS graph, and (bottom right) an SBM graph. The random-graph realization in each panel is the same as in the
corresponding panel of Fig. 1.

Upper bound on �v

We now discuss an upper bound on �v. It was derived
previously in [28].

Let v́ = v + �v, and let λ2 be the second largest (in mag-
nitude) eigenvalue of A. We have the upper bound [28]

sin(θv,v́ ) � ‖�A‖2

λ − λ2
, (21)

where θv,v́ denotes the angle between v and v́. The matrix 2-
norm ‖�A‖2 (i.e., the spectral norm) is equal to the square
root of the largest eigenvalue of �AT �A [22].

Hultgren [28] noted that the inequality (21) is valid as long
as A is symmetric. Because we consider undirected and un-
weighted graphs, this requirement is satisfied. In this setting,
‖�A‖2 = 1, so we further simplify (21) to obtain

sin(θv,v́ ) � 1

λ − λ2
. (22)

Based on our observations, which support a statement in
[21], it is often the case that λ − λ2 is large and that this
difference is larger for denser graphs, with λ → N − 1 and
λ2 → −1 as the number of edges m → N (N − 1)/2. How-
ever, the bound does not give useful information if λ − λ2 is
small (i.e., if the spectral gap is small). For example, λ − λ2

can be less than 1 for graphs with community structure (e.g.,
as generated using an SBM) and ringlike graphs (e.g., as
generated using the WS model).

IV. THE KURAMOTO MODEL OF COUPLED
OSCILLATORS

The Kuramoto model of coupled phase oscillators is a
canonical model to study phenomena such as synchronization
on networks [19]. The structure of an underlying network
impacts the dynamics of Kuramoto oscillators in interesting

ways. We consider the Kuramoto model with diffusive cou-
pling.

We first define the relevant Kuramoto order parameters.
The complex-valued “local order parameter” of oscillator i is
rieiψi , where i = √−1 is the imaginary unit and ri ∈ [0, 1]
and ψi ∈ [−π, π ), respectively, are the amount of synchrony
and the mean phase of oscillator i and its neighbors. We use
the positive real-valued order parameter r = | 1

N

∑N
i=1 rieiψi | to

measure the overall amount of synchrony of all oscillators.
Given the phase �i(t ) of oscillator i, its natural frequency

ωi, and the coupling strength k, the Kuramoto model on a
graph is the set of coupled ordinary differential equations

�̇i = ωi + k
N∑

j=1

Ai j sin(� j − �i ) . (23)

The critical coupling strength kc signifies the onset of a transi-
tion to synchronization [19]. Under specific assumptions (see
Appendix C), which include the requirement that ωi is statis-
tically independent of ri and ψi (which is necessarily true in
our setting), it has been shown that kc ∝ 1/λ [5]. Specifically,
under those assumptions, the N → ∞ asymptotic expression
for kc is

kc = 2

πλg(0)
, (24)

where g(ω) is the probability distribution from which we draw
the natural frequencies. Let

η = 〈v〉2λ2

N〈d〉2〈v4〉 (25)

and

α = −g′′(0)

8g(0)
, (26)
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where 〈d〉 denotes the mean degree of a graph. The square of
the order parameter is

r2 =
(

π2g(0)2η

4α

)(
k

kc
− 1

)(
k

kc

)−3

. (27)

Restrepo et al. [5] made several assumptions (see Ap-
pendix C) to ensure that Eqs. (24) and (27) are valid. They
noted that considering graphs with approximately homoge-
neous degree distributions (specifically, graphs for which the
mean degree 〈d〉 ≈ λ) guarantees that Eq. (27) holds asymp-
totically, and they illustrated numerically for such graphs that
Eq. (27) is valid for k/kc � 1.3. Accordingly, we work in this
setting.

Estimating the order parameter r with edge additions

Because of the presence of λ and v in Eqs. (24) and (25),
we can study how r changes as we add edges to a graph,
provided the degree distribution remains approximately ho-
mogeneous. Using our estimates of �λ in Eq. (17) and �v in
(19), we obtain perturbed versions of Eqs. (24) and (25) after
adding the edge ei j to a graph G. These expressions are

k̂c = 2

π (λ + �λ)g(0)
(28)

and

η̂ = 〈v́〉2(λ + �λ)2

N (〈d〉 + �〈d〉)2〈v́4〉 , (29)

where v́ = v + �v.
Using Eqs. (28) and (29), the square of the order parameter

after adding the edge ei j is

r̂2 =
(

π2g(0)2η̂

4α

)(
k

k̂c
− 1

)(
k

k̂c

)−3

. (30)

Therefore, for a fixed coupling strength k, we see that r̂2 > r2

for edge additions. An analogous derivation gives r̂2 < r2 for
edge removals.

We illustrate Eq. (30) with a particular scenario. Consider a
graph with N � 1 nodes such that the degree di of each node
i satisfies N � di � 1 and the mean degree satisfies 〈d〉 ≈ λ.
When we add an edge, the leading eigenvalue λ and the mean
degree 〈d〉 all increase by small amounts. Therefore, η̂ ≈ η

and k̂c < kc, so r̂2 > r2 for edge additions.
We now relate r to FoEDI. The expression π2g(0)2η̂/(4α)

in Eq. (30) approximately equals π2g(0)2η/(4α) because η̂ ≈
η for a graph with an approximately homogeneous degree
distribution. Let β = π2g(0)2η/(4α), which is a constant.
Substituting β and Eq. (28) into Eq. (30) yields

r̂2 = β

(
k

k̂c
− 1

)(
k

k̂c

)−3

= β

(
kπ (λ + �λ)g(0)

2
− 1

)(
kπ (λ + �λ)g(0)

2

)−3

.

(31)

Let γ = πg(0)/2, which is also a constant. We use the un-
normalized FoEDI ι

†
i j as a first-order estimate of �λ for each

FIG. 6. The natural logarithm of the order-parameter change �r
for each edge ei j of the complement graph GC in order of increasing
values of �r. The horizontal axis is the edge index after we sort the
edges. We describe the graph structure and model parameters in the
main text. The solid blue curve gives �r for the critical coupling
strength k = kc, the dash-dotted red curve gives �r for the coupling
strength k = 1.1kc, the dashed purple curve gives �r for k = 1.2kc,
and the dotted black curve gives �r for k = 1.3kc.

edge ei j . Substituting γ and ι
†
i j into Eq. (31) yields

ř2 = β [kγ (λ + ι
†
i j ) − 1] [γ (kλ + ι

†
i j )]

−3 . (32)

Equation (32) expresses the approximate squared order pa-
rameter ř2 after an edge perturbation in terms of the coupling
strength k and the unnormalized FoEDI ι

†
i j . As we discussed

in Sec. II, the way that one adds edges to a graph can break
the approximate homogeneity of a degree distribution. That is,
edge additions can cause the standard deviation of the degree
distribution to become too large. We do not know an upper
bound on the number of edges that one can add and still pre-
serve approximate degree-distribution homogeneity, although
one can obtain an approximate bound numerically on a case-
by-case basis. We expect that the maximum standard deviation
of a degree distribution that retains degree-distribution ho-
mogeneity increases with the graph size (i.e., the number of
nodes) N .

We give an example that demonstrates how to use Eq. (32).
As in [5], we suppose that the distribution of the natural
frequencies is g(ω) = (3/4)(1 − ω2) for −1 < ω < 1 and
g(ω) = 0 otherwise. We consider a graph with N = 1000
nodes and use a configuration model (which is a type of
random-graph model) [31] without self-edges or multi-edges.
The method that we use to prevent self-edges and multi-edges
is described in [32]. We choose the node degrees uniformly at
random from the set {75, 76, . . . , 124, 125}. For each edge ei j

of the complement graph GC , we compute ι
†
i j using Eq. (17)

and insert it into (32). We consider coupling strengths of
k = kc, k = 1.1kc, k = 1.2kc, and k = 1.3kc. Equation (27) is
valid for these values.

In Fig. 6, we plot ln(�r) = ln(ŕ − r) for the above
four coupling strengths k for a single instantiation of our
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configuration-model graph. For this graph, λ ≈ 〈d〉, so its de-
gree distribution is approximately homogeneous. We observe
that �r is smaller for larger multiples of the critical coupling
strength kc. This observation is expected, as the order param-
eter r at the critical coupling strength k = kc (i.e., when the
oscillators begin to synchronize) increases more from an edge
addition than when k > kc. For progressively larger values
of k, an individual edge addition has a progressively smaller
impact on the order parameter. For k = 1.3kc in our example,
adding edges uniformly at random is comparably effective as
adding edges that maximize FoEDI.

V. CONCLUSIONS AND DISCUSSION

We studied a previously derived measure of edge impor-
tance called dynamical importance, which is a first-order
approximation of how much the leading eigenvalue λ of a
graph’s adjacency matrix A changes when one removes an
edge from it or adds an edge to it [33]. We examined first-
order edge dynamical importance (FoEDI) for undirected,
unweighted graphs. We investigated several computational
aspects of FoEDI and related it to diffusive Kuramoto dynam-
ics on graphs. We also compared FoEDI to the true relative
change in λ (i.e., to �λ/λ), derived an approximation of the
change in the leading eigenvector v after a graph perturba-
tion, and expressed the Kuramoto order parameter in terms of
FoEDI.

We compared FoEDI to �λ/λ for Erdős–Rényi (ER)
graphs, Barabási–Albert (BA) graphs, Watts–Strogatz (WS)
graphs, and stochastic-block-model (SBM) graphs. In our
computations, we observed larger relative errors for our WS
graph than for the other graphs. We also designed an edge-
addition scheme using FoEDI and observed that large-degree
nodes tend to accrue edges earlier than other nodes.

We derived a first-order estimate δv of the true change �v

of an adjacency matrix’s leading eigenvector v after a graph
perturbation. Our estimate is computationally infeasible for
large graphs, as it involves computing a generalized inverse
of a matrix. Nevertheless, its small relative error for some
graphs, such as those that are generated by the ER and BA
random-graph models, demonstrates its potential usefulness.
We also discussed a previously derived upper bound [28]
on the angle between v and v + �v for any graph pertur-
bation. We observed that this bound does not give useful
information for graphs with small spectral gaps. Interesting
future directions to explore include (1) examining the numer-
ical stability of computing generalized inverses of relevant
adjacency matrices and (2) exploring how to exploit sym-
metries and other structures of adjacency matrices to yield
better bounds on δv. Although removing an edge from a
graph or adding an edge to it entails changing only two
entries of its adjacency matrix for an undirected graph (and
to changing only one entry for a directed graph), one can-
not use methods like the Sherman–Morrison formula [34] to
update the adjacency-matrix inverse because the leading
eigenvalue λ also changes. To efficiently compute a gener-
alized inverse X G of a matrix X , it seems useful to explore
iterative methods that are numerically stable when X is non-
singular [35,36].

We also estimated the change in the order parameter r
(which measures the amount of synchronization) in a Ku-
ramoto coupled-oscillator model after edge additions. With
this estimate, we obtained an adjusted value ř. We focused on
graphs with approximately homogeneous degree distributions
(i.e., when λ approximately equals the mean degree). In this
setting, we derived an expression for ř in terms of FoEDI.
Studying perturbations of r in this manner is efficient and
practical because one only needs to compute the eigendecom-
position of A. Although computing FoEDI grants flexibility in
estimating the change in the order parameter for any edge,
adding too many edges can break the approximate degree-
distribution homogeneity. Our exploration suggests that it may
be useful to study the relationship between network pertur-
bations and synchronization. One relevant research direction
is to study the number of edges that one needs to add (for
different edge-addition strategies) to a network of Kuramoto
oscillators to achieve global synchrony [37–39].

It is common to study relationships between network
perturbations and dynamical processes on networks in the
context of controllability of dynamics on graphs (and on more
complicated types of networks) [40]. We expect that edge-
perturbation and node-perturbation schemes that are based on
dynamical importance are particularly relevant in situations
(e.g., in diffusive dynamics) in which spectral information
plays a role in determining the behavior of a dynamical
process. An important avenue of research involves exploring
how dynamics are affected by directed edges and weighted
edges (e.g., see [41]). For instance, one can examine how
perturbations of edge weights (i.e., increasing or decreasing
edge weights without removing or adding any edges) impact
the dynamics of a system. These perturbations are different
than our paper’s perturbations (which are sometimes called
“modifications” [25,26] or “network surgery” [42] because
of their finite size for finite-size networks), as they can be
infinitesimal in size.

ACKNOWLEDGMENTS

We thank Alex Arenas, James Gleeson, Desmond Higham,
Jim Nagy, Piet Van Mieghem, and two anonymous referees
for helpful comments.

APPENDIX A: RECOVERING THE RAYLEIGH
QUOTIENT WITH FoEDI

In this appendix, we relate FoEDI to the Rayleigh quotient.
Consider an undirected and unweighted graph with adjacency
matrix A. Expanding Eq. (1) yields

ιi j = uiAi jv j + u jA jivi

λuT v
. (A1)

The leading eigenvalue λ is a normalization factor in Eq. (A1),
so we ignore it and look at the unnormalized FoEDI

ι
†
i j = uiAi jv j + u jA jivi

uT v
. (A2)
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FIG. 7. The leading eigenvalue λ (vertical axis) as we add edges ei j , one by one, that maximize the FoEDI ιi j . The horizontal axis is the
number of edges that we add from the complement graph GC . We show results for (top left) an ER graph, (top right) a BA graph, (bottom
left) a WS graph, and (bottom right) an SBM graph. The random-graph realization in each panel is the same in the corresponding panel of
Fig. 1.

We begin with the sum of ι
†
i j over all edges. This sum is

N∑
i=1

N∑
j=1

ι
†
i j =

N∑
i=1

N∑
j=1

Ai juiv j + Ajiu jvi

uT v
. (A3)

It follows that

N∑
i=1

N∑
j=1

ι
†
i j = uT Av

uT v
. (A4)

The right-hand side of (A4) is the Rayleigh quotient. Because
A is symmetric, uT = v, so we obtain

N∑
i=1

N∑
j=1

ι
†
i j = λ . (A5)

APPENDIX B: CALCULATION OF THE LEADING
EIGENVALUE λ AS WE ADD EDGES

In Fig. 7, we show how λ changes as we add edges ei j that
maximize ιi j to a graph G. The nonlinear increase in λ as a
function of the number of added edges is consistent with how
σd (the standard deviation of the degree distribution) changes

in Fig. 3 as one adds more edges. We expect the slope of
λ to be large when the slope of σd is large. Our numerical
computations confirm this expectation.

APPENDIX C: THE ASSUMPTIONS ON THE CRITICAL
COUPLING STRENGTH kc AND THE ORDER

PARAMETER r

We now outline the assumptions that were made in [5] to
obtain Eqs. (24) and (27).

The assumptions to obtain Eq. (24) are as follows.
(1) The graph G is unweighted and undirected.
(2) The distribution g(ω) is symmetric about a local max-

imum (which, without loss of generality, we take to be at
ω = 0).

(3) The degree di of each node i ∈ {1, . . . , N} satisfies
di � 1.

(4) The oscillator frequency ωi is statistically independent
of ri (i.e., the amount of synchrony between oscillator i and
its neighbors) and ψi (i.e., the mean phase of oscillator i and
its neighbors) for each oscillator i ∈ {1, . . . , N}.

The assumptions to obtain Eq. (27) are that (1) k ≈ kc and
(2) 〈d4〉 is finite.
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