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38Preface

39An Introduction to Financial Forecasting

40in Investment Analysis

41The objective of this proposed text is a 250–300 page introductory financial

42forecasting text that exposes the reader to applications of financial forecasting

43and the use of financial forecasts in making business decisions. The primary

44forecasts examined in this text are earnings per shares (eps). This text will make

45extensive use of I/B/E/S data, both historic income statement and balance sheet

46data and analysts’ forecasts of eps. We calculate financial ratios that are useful in

47creating portfolios that have generated statistically significant excess returns in the

48world of business. The intended audience is investment students in universities and

49investment professionals who are not familiar with many applications of financial

50forecasting. This text is AU1a data-oriented text on financial forecasting, understanding

51financial data, and creating efficient portfolios. Many regression and time series

52examples use E-Views, OxMetrics, Scientific Computing Associates (SCA), and

53SAS software.

54The first chapter is an introduction to financial forecasting. We tell the reader

55why one needs to forecast. We introduce the reader to the moving average and

56exponential smoothing models to serve as forecasting benchmarks.

57The second chapter introduces the reader to the regression analysis and forecasting.

58In the third chapter, we use regression analysis to examine the forecasting effective-

59ness of the composite index of leading economic indicators, LEI. Economists have

60constructed leading economic indicator series to serve as a business barometer of the

61changing US economy since the time of Wesley C. Mitchell (1913). The purpose of

62this study is to examine the time series forecasts of composite economic indexes,

63produced by The Conference Board (TCB) and test the hypothesis that the leading

64indicators are useful as an input to a time series model to forecast real output in the

65USA.Economic indicators are descriptive and anticipatory time-series data are used to

66analyze and forecast changing business conditions. Cyclical indicators are compre-

67hensive series that are systemically related to the business cycle.
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68 The third chapter introduces the reader to the forecasting process and illustrates

69 exponential smoothing and (Box–Jenkins) time series model estimations and

70 forecasts using the US Real Gross Domestic Product (GDP). The chapter is a

71 “hands-on” exercise in model estimating and forecasting. In this chapter, we

72 examine the forecasting effectiveness of the composite index of leading economic

73 indicators, LEI. The leading indicators can be an input to a transfer function model

74 of real Gross Domestic Product, GDP. The transfer function model forecasts are

75 compared to several naı̈ve models in terms of testing which model produces the

76 most accurate forecast of real GDP. No-change forecasts of real GDP and random

77 walk with drift models may be useful as a forecasting benchmark (Mincer and

78 Zarnowitz 1969; Granger and Newbold 1977).

79 The fourth chapter addresses the issue of composite forecasting using equally

80 weighted and regression-weighted models. We discuss the use of GDP forecasts.

81 We analyze a model of United States equity returns, the USER Model, to address

82 issues of outliers and multicollinearity. The USER Model combines Graham &

83 Dodd variables, such as earnings, book value, cash flow, and sales with analysts’

84 revisions, breadth, and yields and price momentum to rank US equities and identify

85 undervalued securities. Expected returns modeling has been analyzed with a

86 regression model in which security returns are functions of fundamental stock

87 data, such as earnings, book value, cash flow, and sales, relative to stock prices,

88 and forecast earnings per share (Fama and French 1992, 1995; Bloch et al 1993;

89 Haugen and Baker 2010; Stone and Guerard 2010).

90 In Chap. 5, we expand upon the time series models of Chap. 2 and introduce the

91 reader to multiple time series model and Granger causality testing as in the Ashley,

92 Granger, and Schmalensee (1980) and Chen and Lee (1990) tests. We illustrate

93 causality testing with mergers, stock prices, and LEI data in the USA in the postwar

94 period.

95 In Chap. 6, we examine analysts’ forecasts in portfolio construction and man-

96 agement. We use the Barra risk optimization analysis system, the standard portfolio

97 risk model in industry, to create efficient portfolios. The Barra Aegis system

98 produces statistically significant asset selection using the USER Model for the

99 1980–2009 period.

100 In Chap. 7, we show how US, Non-US, and Global portfolio returns can be

101 enhanced by use of eps forecasts and revisions. We use the Sungard APT and

102 Axioma systems to create efficient portfolios using principal components-based

103 risk models.

104 We illustrate global market timing and tactical asset management in Chap. 8.

105 The ability to forecast market shifts allows the manager to increase his or her risk

106 acceptance and enhance the risk-return tradeoff.

107 We summarize our processes, tests, and results in Chap. 9. We produce

108 conclusions that are relevant to the individual investor and portfolio manager.

109 The author acknowledges the support of his wife of 30-plus years, Julie, and

110 their three children, Richard, Katherine, and Stephanie. The author gratefully

111 acknowledges the comments and suggestions of several gentlemen who each read

112 several chapters of this monograph. Professors Derek Bunn, of the London
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113Business School, Martin Gruber, of New York University, Dimitrios Thomakos, of

114the University of Peloponnese (Greece). Any errors remaining are the responsibility

115of the author.

116Anchorage, AK, USA John B. Guerard, Jr
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1Chapter 1

2Forecasting: Its Purpose and Accuracy

3The purpose of this monograph is to concisely convey forecasting techniques to

4applied investment analysis. People forecast when they make an estimate as to the

5future value of a time series. That is, if I observe that IBM has a stock price of

6$205.48, as of March 23, 2012, and earned an earnings per share (eps) of $13.06 for

7fiscal year 2011, then I might wonder at what price IBM would trade for on

8December 31, 2012, if it achieved the $14.85 eps that 21 analysts, on average,

9expect it to earn in 2012 (source: MSN, Money, March 23, 2012, 1:30 p.m., AST).

10The low estimate is $14.18 and the high estimate is $15.28. Ten stock analysts

11currently recommend IBM as a “Strong Buy,” one as a “Moderate Buy,” and ten

12analysts recommend “Hold.” Moreover, if IBM achieves its forecasted $16.36 eps

13average estimate for December 2013, when could be its stock price and should an

14investor purchase the stock? One sees several possible outcomes; can IBM achieve

15its forecasted eps figure? How accurate are the analysts’ forecasts? Second, should

16an investor purchase the stock on the basis of an earnings forecast? Is there a

17relationship between eps forecasts and stock prices? How accurate is it necessary

18for analysts to be for investors to make excess returns (stock market profits) trading

19on the forecasts?

20Granger (1980a, b) differentiated between an event outcome such as to forecast

21IBM eps (at a future date), event time, such as whether the US economy will

22completely recover from the 2008 to 2009 recession and IBM realize its forecasted

23eps, and time series forecasts, generating the forecasts and confidence intervals of

24IBM earnings at future dates. In this monograph, we concentrate on using eps

25forecasts for IBM and approximately 16,000 other firms in stock selection modeling

26and portfolio management and construction strategies to generate portfolio returns

27that outperform the portfolio manager benchmark. To access the effectiveness of

28producing and using forecasts, it is necessary to establish forecast benchmarks,

29measures of forecast accuracy, and methods to test for effective forecast

30implementation.

31One can establish several reasonable benchmarks for forecasting. First, the use

32of a no-change model, in which last period’s value is used as the forecast for the

33current period forecast, has a long and well-recognized history [Theil (1966)

J.B. Guerard, Jr., Introduction to Financial Forecasting in Investment Analysis,
DOI 10.1007/978-1-4614-5239-3_1, # Springer Science+Business Media New York 2013
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34 and Mincer and Zarnowitz (1969)]. Second, one can establish several criteria for

35 forecast accuracy. The forecast error, et, is equal to the actual value, At, less the

36 forecasted value, Ft. One can seek to produce and use forecasts that have the lowest

37 errors on the following measurements:

Mean Error ¼ ST
t¼1eT

T
;

Mape ¼ MeanAbsolute Percentage Error ¼ ST
t¼1jetj
T

;

38 and

Mean Squared Forecast Error ¼ MSFE ¼ S
T

t¼1
e2t :

39 There are obviously advantages and disadvantages to these measures. First, in

40 the mean error, small positive and negative values may “cancel” out implying that

41 the forecasts are “perfect.” Makridakis et al. (2000) AU1remind us that the mean error is

42 only useful in determining whether the forecaster over-forecasts, producing posi-

43 tive forecast AU2errors; that is, the forecaster has a positive forecast bias. The MAPE is

44 the most commonly used forecast error efficiency criteria [Makridakis et al.

45 (1984)]. The MAPE recognizes the need of the forecast to be as close as possible

46 to the realized value. Thus, the sign of the forecast error, whether positive or

47 negative, is not the primary concern. Finally, the mean squared forecast error is

48 assuming a quadratic loss function, that is, a large positive forecast error is not

49 preferred to a large negative forecast error. In this monograph, we examine the

50 implications of the three primary measures of forecast accuracy. We are concerned

51 with two types of forecasts: the economy (the United States and the World,

52 particularly the Euro zone) and analysts forecasts of corporate eps. Why? We

53 believe, and will demonstrate, that a reasonable economic forecast of the direction

54 of the economic strength is significant in allowing an asset manager or an investor

55 to participate in economic growth. Second, we find that firms achieving the highest

56 growth in eps generate the highest stock holder returns during the 1980–2009

57 period; moreover, we will demonstrate that the securities that achieve the highest

58 eps growth and hence returns are not those forecast to have the highest eps, but are

59 not that have the highest eps forecast revisions and that it is equally important for

60 analysts to agree on the eps revisions. That is, the larger the number of analysts that

61 raise their respective eps forecasts, the highest will be stockholder returns.

62 The purpose of this monograph is to introduce the reader to a variety of financial

63 techniques and tools to produce forecasts, test for forecasting accuracy, and dem-

64 onstrate the effectiveness of financial forecasts in stock selection, portfolio con-

65 struction and management, and portfolio attribution. We believe that financial

66 markets are very near to being efficient, but statistically significant excess returns

67 can be earned.
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68Let us discuss several aspects to forecast accuracy: forecast rationality, turning

69point analysis, and absolute and relative accuracy.

70Forecast Rationality

71One of the most important aspects of forecast accuracy is forecast rationality.

72Clements and Hendry (1998) AU3discuss rationality in several levels. “Weak” rational-

73ity is associated with the concept of biasedness. A test of unbiasedness is generally

74written in the form

At ¼ aþ bPt þ et; (1.1)

75where

76At, actual value at time t;
77Pt, predicted value (forecast) at time t;
78ɛt, error term at time t.
79In (1.1), we have only assumed a one-step-ahead forecast horizon. One can

80replace twith t + k to address the issues of k ¼ Period ahead periods. Unbiasedness

81is defined in (1.1) with the null hypothesis that a ¼ 0 and b ¼ 1. The requirement

82for unbiasedness is that E(ɛt) ¼ 0. In expectational terms

E½At� ¼ aþ bE½Pt�: (1.2)

83One expects b ¼ 1 and a ¼ 0, a sufficient, but not necessary condition for

84unbiasedness. “Strong” rationality or efficiency requires that the forecast errors are

85uncorrelated with other data or information available at the time of the forecast,

86Clements and Hendry (1998).

87Much of forecasting analysis, measurement, and relative accuracy was devel-

88oped in Theil (1961) AU4and Mincer and Zarnowitz (1969). Theil discussed several

89aspects of the quality of forecasts. Theil (p. 29) discussed the issue of turning points,

90or one-sided movements, correctly. Theil produced a two-by-two dichotomy of

91turning point forecasting. The Theil turning point analysis is well worth reviewing.

92A turning point is correctly predicted; that is, a turning point is predicted and an

93actual turning point occurs (referred as “i”). In a second case, a turning point is

94predicted, but does not occur (“ii”). In the third case, a turning point actually occurs,

95but was not predicted (“iii”); the turning point is incorrectly predicted. In the fourth

96and final case, a turning point is not predicted and not recorded. Thus, “i” and “iv”

97are regarded as forecast successes and “ii” and “iii” are regarded as forecast

98failures. The Theil turning point table is written as

99Actual turning points Predicted turning points

Turning point No turning point

100Turning point i iii

101No turning point ii iv

Forecast Rationality 3



102 The Theil turning point failure measures:

f1 ¼
iii

iþ ii
; f2 ¼

iii

iþ iii
:

103 Small values of f1 and f2 indicate successful turning point forecasting.

104 The turning point errors are often expressed graphically, where

C

D

A

B

Actual
Change

Predicted
Change

45°

Chart 1.

105 Regions A and D represent overestimates of changes whereas regions B and C
106 represent underestimates of changes. The 45� line represents the line of perfect

107 forecasts. Elton et al. (2009) AU5make extensive use of the Theil graphical chart in their

108 analysis of analysts’ forecasts of eps.

109 A line of perfect forecasting is shown in Chart 2, where U ¼ 0.
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111A line of maximum inequality is shown in Chart 3 where U ¼ 1.
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112The forecasters in Chart 3 are very bad (the worst possible). Intermediate grades

113of forecasting are shown in Chart 4 and Chart 5 where the respective m are small and

114large, respectively.
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116 Theil (1961, p. 30) analyzed the relationship between predicted and actual

117 values of individual i.

Pi ¼ aþ bAi; b>0: (1.3)

118 Perfect forecasting requires that a ¼ 0 and b ¼ 1. An alternative representation

119 of (1.3) can be represented by the now familiar inequality coefficient, now known

120 as Theil’s U, or Theil Inequality coefficient, TIC.

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T SðPi � AiÞ2

q
ffiffiffiffiffiffiffiffiffiffiffi
1
TSP

2
i

q
þ

ffiffiffiffiffiffiffiffiffiffiffi
1
T SA

2
i

q : (1.4)

121 If U ¼ 0, then Pi ¼ Ai for all I, and there is perfect forecasting. If U ¼ 1, then

122 the TIC reaches its “maximum in equality” and this represents very bad forecasting.

123 Theil broke down the numerator of m into sources or proportions of inequality.

1

T
SðPi � AiÞ2 ¼ ð �P� �AÞ2 þ ðSP � SAÞ2 þ 2ð1� rÞSPSA; (1.5)

124 where

125 �P ¼ mean of predicted values;

6 1 Forecasting: Its Purpose and Accuracy



126�A ¼ mean of actual values;

127SP = standard deviation of predicted values;

128SA = standard deviation of actual values;

129and

130r = correlation coefficient of predicted and actual values.

131Let D represent the denominator of (1.4).

UM ¼
�P� �A

D
;

US ¼ SP � SA
D

;

UC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� rÞSPSA

p
D

;

U2
M þ U2

S þ U2
C ¼ U2: (1.6)

132The term UM is a measure of forecast bias. The term US represents the variance

133proportion and UC represents the covariance proportion. UM is bounded within plus

134and minus 1; that is, UM ¼ 1 indicates no variation of P and A or perfect correlation

135with slope of 1.

UM ¼ U2M

U2
; US ¼ U2

S

U2
¼ UC ¼ U2

C

U2
:

136Theil refers toUM,US, andUC as partial coefficients of inequality due to unequal

137central tendency, unequal variation, and imperfect correlation, respectively.

UM þ US þ UC ¼ 1: (1.7)

138Theil (1961, p. 39) decomposes (1.5) into

1

T
SðPi � AiÞ2 ¼ ð �P� �AÞ2 þ ðSP � SAÞ2 þ ð1� r2ÞS2A: (1.8)

139If a forecast is unbiased, then Eð �PÞ ¼ Eð �AÞ and, in the regression of

Ai ¼ Pi þ Ui;

140whereUi ¼ regression error term, the slope of A on P is
rSA
SP

.U2 ¼ U2
M þ U2

R þ U2
D;

Forecast Rationality 7



141 where U2
R ¼ SP�rSA

D

� �2
;

U2
D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� r2Þp
SA

D

 !2

:

142 UR is inequality due to an incorrect regression slope and UD is inequality due to

143 nonzero regression error terms (disturbances).

UR ¼ U2
R

U2
and UD ¼ U2

D

U2
:

144 The UR term is the regression proportion of inequality. The UD term is the

145 disturbance proportion of inequality.

UM þ UR þ UD ¼ 1:

146 The modern version of the TIC is written as the Theil U as

U ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ST�1
t¼1

Ftþ1�Yt�Ytþ1þYt
Yt

� �2
ST�1
t¼1

Ytþ1�Yt
Yt

� �2
vuuuut (1.9)

147 or

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ST�1
t¼1 ðFPEtþ1 � APEtþ1Þ2

ST�1
t¼1 ðAPEtþ1Þ2

s
;

148 where

149 FPEtþ1 ¼ Ftþ1�Yt
Yt

and

150 APEtþ1 ¼ Ytþ1�Yt
Yt

;

151 where F ¼ forecast and A ¼ Actual values,

152 where FPE is the forecast relative change and APE is the actual relative change.

153 Absolute and Relative Forecast Accuracy

154 Mincer and Zarnowitz (1969) built upon the TIC analysis and discussed absolute

155 and relative forecasting accuracy in a more intuitive manner.
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156

157The line of perfect, LPF, is of course where P ¼ A, as was the case with Theil.

158Mincer and Zarnowitz (1969) write the mean square error of forecast, MP, as

MP ¼ EðA� PÞ2; (1.10)

159where E denotes expected value. In the Mincer–Zarnowitz Prediction–Realization

160diagram, shown in Chart 6, the line E � EC denotes forecast bias. Thus, E(A) –
161E(P) ¼ E(U) denotes forecast bias.
162Let us return for the actual–predicted value regression analysis:

At ¼ Pt þ ut (1.11)

163which is estimated with an ordinary least squares regression of

At ¼ aþ bPt þ vt: (1.12)

164It is necessary for the forecast error, ut, to be uncorrelated with forecast values, Pt,

165for the regression slope b to equal unity (1.0). The residual variance in the regression
166s2(v) equals the variance of the forecast error s2(u). Forecasts are efficient if s2(u)
167¼ s2(v). If the forecast is unbiased, a ¼ 0, and s2(v) ¼ s2(u) ¼ MP.

168Mincer and Zarnowitz (1969) discuss economic forecasts in terms of predictions

169of changes (not absolute levels). The mean square error is

ðAt � At�1Þ � ðPt � At�1Þ ¼ At � Pt ¼ ut: (1.13)

Absolute and Relative Forecast Accuracy 9



170 The relevant Mincer–Zarnowitz regression slope is

bD ¼ covðAt � At�1;Pt � At�1Þ
s2ðPt � At�1Þ :

171 If the level forecast is efficient, then b ¼ 1 (cov (ut, Pt) ¼ 0). The bD ¼ 1 and

172 only if cov (u,At�1 ¼ 0. The extrapolative value of At�1 must be incorporated

173 into the forecasts. Underestimation of change occurs when the predicted change

174 (Pt – At�1) is of the same size, but smaller size than the actual change (At – At�1).

E Pt � At�1j j<E At � At�1j j (1.14)

175 or

EðPt � At�1Þ2<EðAt � At�1Þ2:

EðPtÞ�EðAt�1Þ½ �2þs2ðPt�At�1Þ< EðAtÞ�EðAt�1Þ½ �2þs2ðAt�At�1Þ2: (1.15)

176 Underestimation of changes occurs if

EðPtÞ< EðAtÞ;when At and Pt > At�1;

EðPtÞ< EðAtÞ;whenAt andPt< At�1;

177 and or

s2ðPt � At�1Þ <s2ðAt � At�1Þ: (1.16)

178 In (1.16), when predictions of changes are efficient, bD ¼ 1, then

179 s2(At – At�1) ¼ s2(Pt – At�1) + s2(Ut).

180 Mincer and Zarnowitz (1969) decomposed the mean square error to create an

181 index of forecasting quality, RM. The index of forecasting quality is the ratio of the

182 mean square error of forecast and the mean square error of extrapolation, the

183 relative mean square error. If forecasts are “good” and are superior to extrapolated

184 values, then 0 < RM < 1. If RM > 1, then the forecast is inferior.

RM ¼ MP

MX
¼ 1� UX

MX

1� UP
MP

�MC
P

MC
X

¼ gRMC: (1.17)

185 If x is a best, unbiased, and efficient extrapolation then MC
X ¼ MX and g ¼ MP

MCP
186 >1 and RMC � RM. Mincer and Zarnowtiz found that autoregressive

187 extrapolations were not optimal; however, RMC < RM in twelve of 18 cases.

188 Mincer and Zarnowitz found that inefficiency was primarily due to bias.

189 Mincer and Zarnowitz put for the r a theory that if RMC, the forecast is superior

190 relative to an extrapolative forecast benchmark, then “useful autonomous informa-

191 tion enhanced the forecast.” Autoregressive extrapolations showed substantial
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192improvement over naı̈ve (average) models, and while not optimal, were thus more

193efficient. A small number of lags produced satisfactory extrapolative benchmarks.

194The Mincer–Zarnowitz approach was important, not only because of its no-

195change benchmarks but (benchmark method of forecast) also because of its use of

196an extrapolative forecast which should incorporate the history of the series. Mincer

197and Zarnowitz concluded that the underestimation of changes reflects the conser-

198vative prediction of growth rates in series with upward trends.

199Granger and Newbold (1986) AU6addressed two aspects of Mincer and Zarnowitz.

200First in the Mincer and Zarnowitz forecast efficiency regression:

Xt ¼ aþ bft þ et: (1.18)

201A forecast is efficient if a ¼ 0 and b ¼ 1. However, the forecast, ft, must be

202uncorrelated with the error term, et. Granger and Newbold question this assumption

203in practical applications. Second, it is essential the et, the error term be white noise- AU7

204suboptimal forecasts (whether one-step-ahead or k-step-ahead) are not white noise.

205For a forecast to be optimal, the expected squared error must have zero mean and be

206uncorrelated with the predictor-series. Unless the error term series takes on the

207value “zero” with probability of one, the predictor series will have a smaller

208variance than the real series. Second, random walk series appear to give reasonable

209predictors of another independent random walk series. A random walk with drift

210forecast is the approximate form as a first-order exponential smoothing model

211shown in the appendix. We show the first-order and second-order exponential

212smoothing model, the linear, trend, and seasonal models, the Holt (1957) AU8and

213Winters (1960) AU9, because Makridakis and Hibon (2000) report that simple, seasonal

214exponential smoothing models with seasonality continue to outperform more

215advanced time series models for large economic time series. Moreover, Makridakis

216and Hibon (2000) report that equally weighted composite forecasts outperform

217individual forecasts, a conclusion consistent with Makridakis and Hibon (1979) AU10

218and Makridakis et al. (1984). We review the Clemen and Winkler (1986) AU11GNP

219forecasts in Chap. 4 that examine composite forecasting.

220Granger and Newbold (1977, 1986) restate the forecast and realization problem.

221The series to be analyzed and forecast has a fixed mean and variance:

EðxtÞ ¼ mx

Eðx� mxÞ2 ¼ s2x :

222The predictor series, f2, has mean, fx, variance s2x, and a correlation r with x. The
223expected squared forecast error is

Eðxt � ftÞ2 ¼ ðmf � mxÞ2 þ ðsf � rsxÞ2 þ ð1� r2Þs2x : (1.19)

224A large correlation, r, minimizes the expected squared error. If

mf ¼ mx and sf ¼ rsx;
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225 then for optimal forecasts, the variance of the predictor series is less than the

226 variance of the actual series. The population correlation coefficient is a measure

227 of forecast quality. Granger and Newbold (1986) stated that it is “trivially easy” to

228 obtain a predictor series “highly correlated” with the level of any economic time

229 series.

230 Granger and Newbold (1986) restated Theil’s decomposition of average squared

231 forecast errors. Defining:

D2
N ¼ 1

T
S
T

t¼1
ðxt � ftÞ2 ¼ ð �f � �xÞ2 þ ðsf � sxÞ2 þ 2ð1� rÞsf sx (1.20)

232 and

D2
N ¼ ð �f � �xÞ2 þ ðsf � rsxÞ2 þ ð1� r2Þs2x : (1.21)

233 If �f and �x are sample means of the predictor and predicted series, sf and sx are the
234 respective sample standard deviations, and r is the sample correlation coefficient of

235 x and f.

Um ¼ ð�f � �xÞ2
D2

N

; Us ¼ ðsf � sxÞ2
D2

N

;

Uc ¼ 2ð1� rÞsf sx D
2

N

.
:

236 As with Theil, UM + US + UC ¼ 1.

237 If x is a first-order autoregressive process,

xt ¼ axt�1 þ et:

238 An optimal forecast, ft ¼ axt�1, produces U
M ¼ 0, and US + UC ¼ 1. A high

239 correlation between predictor and predicted series will most likely not be achieved.

240 The standard deviation of the forecast series is less than the actual series and US is

241 substantially different from zero. Granger and Newbold suggest testing for

242 randomness of forecast errors.

243 Cragg and Malkiel (1968) created a database of five forecasters of long-term

244 earnings forecasts for 185 companies in 1962 and 1963. These five forecast firms

245 included two New York City banks (trust departments), an investment banker, a

246 mutual fund manager, and the final firm was a broker and an investment advisor.

247 The Cragg and Malkiel (1968) forecasts were 5-year average annual growth rates.

248 The earnings forecasts were highly correlated with one another; the highest paired

249 correlation was 0.889 (in 1962) and the lowest paired correlation was 0.450 (in

250 1963) with most correlations exceeding 0.7. Cragg and Malkiel examined the

251 earnings forecasts among eight “sectors” and found smaller correlation coefficients
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252among the paired correlations within sectors. The correlations of forecasts for 1963

253were very highly correlated with 1962 forecasts, exceeding 0.88, for the forecasters.

254Furthermore, Cragg and Malkiel found that the financial firms’ forecasts of earnings

255were lowly correlated, 0.17–0.45, with forecasts created from time series

256regressions of earnings over time. Cragg and Malkiel (1968) used the TIC (1966)

257to measure the efficiency of the financial forecasts and found that the correlations of

258predicted and realized earnings growth were low, although most were statistically

259greater than zero. The TICs were large, according to Cragg and Malkiel (1968),

260although they were less than 1.0 (showing better than no-change forecasting). The

261TICS were lower (better) within sectors; the forecasts in electronics and electric

262utility firms were best and foods and oils were the worst firms to forecast earnings

263growth. Cragg and Malkiel (1968) concluded that their forecasts were little better

264than past growth rates and that market price-earnings multiples were little better

265predictors of growth than the financial analysts’ forecasts.

266The Cragg and Malkiel (1968) study was one of the first and most-cited studies

267of earnings forecasts.

268Elton and Gruber (1972) built upon the Cragg and Malkiel study and found

269similar results. That is, a simple exponentially weighted moving average was a

270better forecasting model of annual earnings than additive or multiplicative expo-

271nential smoothing models with trend or regression models using time as an inde-

272pendent variable. Indeed, a very good model was a naı̈ve model, which assumed a

273no-change in annual eps with the exception of the prior change that had occurred in

274earnings. One can clearly see the random walk with drift concept of earnings in the

275Elton and Gruber (1972). Elton and Gruber compared the naı̈ve and time series

276forecasts to three financial service firms, and found for their 180 firm sample that

277two of the three firms were better forecasters than the naı̈ve models. Elton et al.

278(1981) build upon the Cragg and Malkiel (1968) and Elton and Gruber (1972)

279results and create an earnings forecasting database that evolves to include over

28016,000 companies, the Institutional Brokerage Estimation Services, Inc. (I/B/E/S).

281Elton et al. (1981) find that earnings revisions, more than the earnings forecasts,

282determine the securities that will outperform the market. Guerard and Stone (1992) AU12

283found that the I/B/E/S consensus forecasts were not statistically different than

284random walk with drift time series forecasts for 648 firms during the 1982–1985

285period. Guerard and Stone ran annual eps forecast regressions for rationality and

286rejected the null hypothesis that analysts’ forecasts were rational. Analysts’

287forecasts were optimistic, producing negative intercepts in the rationality

288regressions. Analysts’ forecasts became less biased during the year and by the

289third quarter of the year, the bias was essentially zero. Analysts’ forecasts were

290highly correlated with the time series forecasts and latent root regression, used in

291Chap. 4, reduced forecasting errors in composite earnings forecasting models. Lim

292(2001), using the I/B/E/S Detailed database from 1984 to December 1996, found

293forecast bias associated with small and more volatile stocks, experienced poor past

294stock returns, and had prior negative earnings surprises. Moreover, Lim (2001)

295found that relative bias was negatively associated with the size of the number of

296analysts in the brokerage firm. That is, smaller firms with fewer analysts, often with
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297 more stale data, produced more optimistic forecasts. Keane and Runkle (1998)

298 found during the 1983–1991 period that analysts’ forecasts were rational, once

299 discretionary special charges are removed. The Keane and Runkle (1998) study is

300 one of the very few studies finding rationality of analysts’ forecasts; most find

301 analysts to be optimistic. Further work by Wheeler (1994) will find that firms where

302 analysts agree with the direction of earnings revisions, denoted breadth, will

303 outperform stocks with lesser agreement of earnings revisions. Guerard et al.

304 (1997) combined the work of Elton et al. (1981) and Wheeler (1994) to create a

305 better earnings forecasting model, CTEF, which we use in Chaps. 6 and 7. The

306 CTEF variable continues to produce statistically significant excess return in

307 backtest and in identifying real-time security mispricing.

308 Appendix

309 Exponential Smoothing

310 The most simple forecast of a time series can be estimated from an arithmetic mean

311 of the data Davis and Nelson (1937) AU13. If one defines f as frequencies, or occurrences
312 of the data, and x as the values of the series, then the arithmetic mean is

A ¼ f1x1 þ f2x2 þ f3x3 þ . . .þ ftxt
T

(1.22)

313 where T ¼ f1 þ f2 þ f3 þ . . .þ ft:

A ¼ Sfixi
T

:

314 Alternatively,

Sfiðxi � xÞ
T

A¼xþSfiðxi � xÞ
T

: (1.23)

315 The first moment, mean, is

A¼Sfixi
T

¼ m1

m0

m0 ¼
X

fi ¼ T;m1 ¼
X

fixi:
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316If x ¼ 0, then

s2 ¼ Sfix2i
T

� A2

s2 ¼ m2

mo
� m2

1

m2
o

¼ ðm0m2 � m2
1Þm2

0: (1.24)

317Time series models often involve trend, cycle seasonal, and irregular

318components, Brown (1963) AU14. An upward-moving or increasing series over time

319could be modeled as

xt ¼ aþ bt; (1.25)

320where a is the mean and b is the trend, or rate at which the series increases over

321time, t. Brown (1963, p. 61) uses the closing price of IBM common stock as his

322example of an increasing series. One could use a quadrant term, c. If c is positive,
323then the series

xt ¼ aþ btþ ct2 (1.26)

324trend is changing toward an increasing trend, whereas a negative c denotes a

325decreasing rate of trend, from upward to downward.

326In an exponential smoothing model, the underlying process is locally constant,

327xt ¼ a, plus random noise, et.

xt ¼ aet: (1.27)

328The average value of e ¼ 0.

329A moving average can be estimated over a portion of the data:

Mt ¼ x1 þ xt�1 þ . . .þ xt�N þ 1

N
; (1.28)

330where Mt is the actual average of the most recent N observations.

Mt ¼ Mt�1 þ xt � xt�N

N
: (1.29)

331An exponential smoothing forecast builds upon the moving average concept.

stðxÞ ¼ axt þ ð1� aÞst�1ðxÞ;

332where a ¼ smoothing constant, which is similar to the fraction 1 T= in a moving

333average.
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stðxÞ ¼ axt þ ð1� aÞ½axt�1 þ ð1� aÞst�2ðxÞ�
¼ aSt�1

ko ð1� aÞkxt�k þ ð1� aÞtxo;
(1.30)

334 where st(x) is a linear combination of all past observations. The smoothing constant

335 must be estimated. In a moving average process, the Nmost recent observations are

336 weighted (equally) by 1/N and the average age of the data is

k ¼ 0þ 1þ 2þ . . .þ N � 1

N
¼ N � 1

2
:

337 An N-period moving average is equivalent to an exponential smoothing model

338 having an average age of the data. The one-period forecast for an exponential

339 smoothing model is

Ftþ1 ¼ Ft þ aðyt � FtÞ; (1.31)

340 where a is the constant, 0 < a < 1.

341 Intuitively, if a is near zero, then the forecast is very close to the previous value’s
342 forecast. Alternatively,

Ftþ1 ¼ ayt þ ð1� aÞFt

Ftþ1 ¼ ayt þ að1� aÞyt�1 þ ð1� aÞ2Ft�1:
(1.32)

343 Makridakis et al. (1998) express Ft�1 in terms of Ft�2 and, over time,

Ft�1 ¼ ayt þ að1� aÞyt�1 þ aða� aÞ2yt�2 þ að1� aÞ3yt�3

þ að1� aÞ4yt�4 þ að1� aÞ5yt�5 þ . . .

þ að1� aÞt�1 yt þ ð1� aÞtF1: (1.33)

344 Different values of a produce different mean squared errors. If one sought to

345 minimize the mean absolute percentage error, the adaptive exponential smoothing

346 can be rewritten as

Ftþ1 ¼ ayt þ ð1� aÞFt (1.34)

a tþ 1 ¼ At

Mt

����
����;

347

where At ¼ bEt þ ð1� bÞAt�1

Mt ¼ bjEtj þ ð1� bÞMt�1

Et ¼ yt � Ft:
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348At is a smoothed estimate of the forecast error and a weighted average of At�1

349and the last forecast error, Et.

350One of the great forecasting models is the Hold (1957) AU15model that allowed

351forecasting of data with trends. Holt’s linear exponential smoothing forecast is

Lt ¼ ayt þ ð1� aÞðLt�1 þ bt�1Þ
bt ¼ bðLt � Lt�1Þ þ ð1� bÞbt�1

Ftþm ¼ Lt þ btm: (1.35)

352Lt is the level of the series at time t, and bt is the estimate of the slope of the series

353at time t. The Holt model forecast should be better forecasts than adaptive expo-

354nential smoothing models, which lack trends. Makridakis et al. (1998) remind the

355reader that the Holt model is often referred to as “double exponential smoothing.” If

356a ¼ b, then the Holt model is equal to Brown’s double exponential smoothing

357model.

358The Hold (1957) and Winters (1960) seasonal model can be written as

(Level) Lt ¼ a
yt
st�s

þ ð1� aÞðLt�1 þ bt�1Þ

ðTrendÞ bt þ bðLt � Lt�1Þ þ ða� bÞbt�1

ðSeasonalÞ st ¼ g
yt
Lt

þ ða� gÞst�s

ðForecastÞ Ftþm ¼ ðLt þ btmÞSt�sþm:

359Seasonality is the number of months or quarters, Lt is the level of the series, bt is
360the trend of the series, and st is the seasonal component.
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AU15 Hold (1957) is cited in the text but its
bibliographic information is missing.
Kindly provide its bibliographic in-
formation. Otherwise, please delete it
from the text.

AU16 Guerard and Stone (1992); Makrida-
kis and Winkler (1983); Winkler and
Makridakis (1983); Zarnowitz
(2004); Zarnowitz (2001); Zarnowitz
and Ozyildirim (2001); Zarnowitz
(1992) have been provided in the
reference list but citations in the text
are missing. Please advise location of
citations. Otherwise, delete it from
the reference list.



1Chapter 2

2Regression Analysis and Forecasting Models

3A forecast is merely a prediction about the future values of data. However, most

4extrapolative model forecasts assume that the past is a proxy for the future. That is,

5the economic data for the 2012–2020 period will be driven by the same variables as

6was the case for the 2000–2011 period, or the 2007–2011 period. There are many

7traditional models for forecasting: exponential smoothing, regression, time series,

8and composite model forecasts, often involving expert forecasts. Regression analy-

9sis is a statistical technique to analyze quantitative data to estimate model

10parameters and make forecasts. We introduce the reader to regression analysis in

11this chapter.

12The horizontal line is called the X-axis and the vertical line the Y-axis. Regres-
13sion analysis looks for a relationship between the X variable (sometimes called the

14“independent” or “explanatory” variable) and the Y variable (the “dependent”

15variable).

16For example, X might be the aggregate level of personal disposable income in

17the United States and Y would represent personal consumption expenditures in the

18United States. By looking up these numbers for a number of years in the past, we

19can plot points on the graph. More specifically, regression analysis seeks to find the

20“line of best fit” through the points. Basically, the regression line is drawn to best

21approximate the relationship between the two variables. Techniques for estimating

J.B. Guerard, Jr., Introduction to Financial Forecasting in Investment Analysis,
DOI 10.1007/978-1-4614-5239-3_2, # Springer Science+Business Media New York 2013
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22 the regression line (i.e., its intercept on the Y-axis and its slope) are the subject of

23 this chapter. Forecasts using the regression line assume that the relationship which

24 existed in the past between the two variables will continue to exist in the future.

25 There may be times when this assumption is inappropriate, such as the “Great

26 Recession” of 2008 when the housing market bubble burst. The forecaster must be

27 aware of this potential pitfall. Once the regression line has been estimated, the

28 forecaster must provide an estimate of the future level of the independent variable.

29 The reader clearly sees that the forecast of the independent variable is paramount to

30 an accurate forecast of the dependent variable.

31 Regression analysis can be expanded to include more than one independent

32 variable. Regressions involving more than one independent variable are referred to

33 as multiple regression. For example, the forecaster might believe that the number of

34 cars sold depends not only on personal disposable income but also on the level of

35 interest rates. Historical data on these three variables must be obtained and a plane

36 of best fit estimated. Given an estimate of the future level of personal disposable

37 income and interest rates, one can make a forecast of car sales.

38 Regression capabilities are found in a wide variety of software packages and

39 hence are available to anyone with a microcomputer. Microsoft Excel, a popular

40 spreadsheet package, SAS, SCA, RATS, and EViews can do simple or multiple

41 regressions. Many statistics packages can do not only regressions but also other

42 quantitative techniques such as those discussed in Chap. 3 (Time Series Analysis

43 and Forecasting). In simple regression analysis, one seeks to measure the statistical

44 association between two variables, X and Y. Regression analysis is generally used to
45 measure how changes in the independent variable, X, influence changes in the

46 dependent variable, Y. Regression analysis shows a statistical association or corre-

47 lation among variables, rather than a causal relationship among variables.

48 The case of simple, linear, least squares regression may be written AU1in the form

Y ¼ aþ bX þ e; (2.1)

49 where Y, the dependent variable, is a linear function of X, the independent variable.
50 The parameters a and b characterize the population regression line and e is the

51 randomly distributed error term. The regression estimates of a and b will be derived

52 from the principle of least squares. In applying least squares, the sum of the squared

53 regression errors will be minimized; our regression errors equal the actual depen-

54 dent variable minus the estimated value from the regression line. If Y represents the

55 actual value and Y the estimated value, their difference is the error term, AU2e. Least
56 squares regression minimized the sum of the squared error terms. The simple

57 regression line will yield an estimated value of Y, Ŷ , by the use of the sample

58 regression:

Ŷ ¼ aþ bX: (2.2)

59 In the estimation (2.2), a is the least squares estimate of a and b is the estimate of

60 b. Thus, a and b are the regression constants that must be estimated. The least
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61squares regression constants (or statistics) a and b are unbiased and efficient

62(smallest variance) estimators of a and b. The error term, ei, is the difference

63between the actual and estimated dependent variable value for any given indepen-

64dent variable values, Xi.

ei ¼ Ŷi � Yi: (2.3)

65The regression error term, ei, is the least squares estimate of ei, the actual

66error term.1

67To minimize the error terms, the least squares technique minimizes the sum of

68the squares error terms of the N observations,

XN
i¼1

e2i : (2.4)

69The error terms from the N observations will be minimized. Thus, least squares

70regression minimizes:

XN
i¼1

e2i ¼
XN
i¼1

½Yi � Ŷi�2 ¼
XN
i¼1

½Yi � ðaþ bXiÞ�2: (2.5)

71To assure that a minimum is reached, the partial derivatives of the squared error

72terms function

XN
i¼1

¼ ½Yi � ðaþ b XiÞ�2

73will be taken with respect to a and b.

@
PN
i¼1

e2i

@a
¼ 2

XN
i¼1

ðYi � a� bXiÞð�1Þ

¼ �2
XN
i¼1

Yi �
XN
i¼1

a� b
XN
i¼1

Xi

 !

1 The reader is referred to an excellent statistical reference, S. Makridakis, S.C. Wheelwright, and

R. J. Hyndman, Forecasting: Methods and Applications, Third Edition (New York; Wiley, 1998),

Chapter 5.
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@
PN
i¼1

e2i

@b
¼ 2

XN
i¼1

ðYi � a� bXiÞð�XiÞ

¼ �2
XN
i¼1

YiXi �
XN
i¼1

Xi � b
XN
i¼1

X2
1

 !
:

74 The partial derivatives will then be set equal to zero.

@
PN
i¼1

e2i

@a
¼ �2

XN
i¼1

Yi �
XN
i¼1

a� b
XN
i¼1

Xi

 !
¼ 0

@
PN
i¼1

e2i

@b
¼ �2

XN
i¼1

YXi �
XN
i¼1

Xl � b
XN
i¼1

X2
1

 !
¼ 0:

(2.6)

75 Rewriting these equations, one obtains the normal equations:

XN
i¼1

Yi ¼
XN
i¼1

aþ b
XN
i¼1

Xi

XN
i¼1

YiXi ¼ a
XN
i¼1

Xi þ b
XN
i¼1

X2
1:

(2.7)

76 Solving the normal equations simultaneously for a and b yields the least squares
77 regression estimates:

â ¼
PN
i¼1

X2
i

� � PN
i¼1

Yi

� �
� PN

i¼1

XiYi

� �

N
PN
i¼1

X2
i

� �
� PN

i¼1

Xi

� �2
;

b̂ ¼
PN
i¼1

XiYi

� �
� PN

i¼1

Xi

� � PN
i¼1

Yi

� �

N
PN
i¼1

X2
i

� �
� PN

i¼1

Xi

� �2
:

(2.8)

78 An estimation of the regression line’s coefficients and goodness of fit also can be

79 found in terms of expressing the dependent and independent variables in terms of

80 deviations from their means, their sample moments. The sample moments will be

81 denoted by M.
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MXX ¼
XN
i¼1

x2i ¼
XN
i¼1

xi � �xð Þ2

¼ N
XN
i¼1

Xi �
XN
i¼1

Xi

 !2

MXY ¼
XN
i¼1

xiyi ¼
XN
i¼1

Xi � �Xð Þ Yi � �Yð Þ

¼ N
XN
i¼1

XiYi �
XN
i¼1

Xi

 ! XN
i¼1

Yi

 !

MYY ¼
XN
i¼1

y2i ¼
XN
i¼1

Y � �Yð Þ2

¼ N
XN
i¼1

Y2
i

 !
�
XN
i¼1

ðYiÞ2:

82The slope of the regression line, b, can be found by

b ¼ MXY

MXX
(2.9)

a ¼
PN
i¼1

Yi

N
� b

PN
i¼1

Xi

N
¼ �y� b �X: (2.10)

83The standard error of the regression line can be found in terms of the sample

84moments.

S2e ¼
MXXðMYYÞ � ðMXYÞ2

NðN � 2ÞMXX

Se ¼
ffiffiffiffiffi
S2e

q
:

(2.11)

85The major benefit in calculating the sample moments is that the correlation

86coefficient, r, and the coefficient of determination, r2, can easily be found.

r ¼ MXY

ðMXXÞðMYYÞ
R2 ¼ ðrÞ2:

(2.12)
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87 The coefficient of determination, R2, is the percentage of the variance of the

88 dependent variable explained by the independent variable. The coefficient of

89 determination cannot exceed 1 nor be less than zero. In the case of R2 ¼ 0, the

90 regression line’s Y ¼ Y and no variation in the dependent variable are explained. If

91 the dependent variable pattern continues as in the past, the model with time as the

92 independent variable should be of good use in forecasting.

93 The firm can test whether the a and b coefficients are statistically different from

94 zero, the generally accepted null hypothesis. A t-test is used to test the two null

95 hypotheses:

96 H01 : a ¼ 0

97 HA1
: a ne 0

98 H02 : b ¼ 0

99 HA2
: b ne 0,

100 where ne denotes not equal.

101 The H0 represents the null hypothesis while HA represents the alternative

102 hypothesis. To reject the null hypothesis, the calculated t-value must exceed the

103 critical t-value given in the t-tables in the appendix. The calculated t-values for a
104 and b are found by

ta ¼ a� a
Se

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðMXXÞ

MXX þ ðN �XÞ2
s

tb ¼ b� b
Se

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMXXÞ
N

r
:

(2.13)

105 The critical t-value, tc, for the 0.05 level of significance with N � 2 degrees of

106 freedom can be found in a t-table in any statistical econometric text. One has a

107 statistically significant regression model if one can reject the null hypothesis of the

108 estimated slope coefficient.

109 We can create 95% confidence intervals for a and b, where the limits of a
110 and b are

aþ ta=2Se
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN �XÞ2 þMXX

NðMXXÞ

s

bþ ta=2Se

ffiffiffiffiffiffiffiffiffi
N

MXX

r
:

(2.14)

111 To test whether the model is a useful model, an F-test is performed where

112 H0 ¼ a ¼ b ¼ 0

113 HA ¼ a ne b ne 0
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F ¼
PN
i¼1

Y2 � 1� b2
PN
i¼1

X2
i

PN
i¼1

e2 � N � 2

: (2.15)

114As the calculated F-value exceeds the critical F-value with (1, N � 2) degrees of

115freedom of 5.99 at the 0.05 level of significance, the null hypothesis must be

116rejected. The 95% confidence level limit of prediction can be found in terms of

117the dependent variable value:

ðaþ bX0Þ þ ta=2Se

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðX0 � �XÞ2
1þ N þMXX

s
: (2.16)

118Examples of Financial Economic Data

119The most important use of simple linear regression as developed in (2.9) and (2.10)

120is the estimation of a security beta. A security beta is estimated by running a

121regression of 60 months of security returns as a function of market returns. The

122market returns are generally the Standard & Poor’s 500 (S&P500) index or a

123capitalization-weighted index, such as the value-weighted Index from the Center

124for Research in Security Prices (CRSP) at the University of Chicago. The data for

125beta estimations can be downloaded from the Wharton Research Data Services

126(WRDS) database. The beta estimation for IBM from January 2005 to December

1272009, using monthly S&P 500 and the value-weighted CRSP Index, produces a beta

128of approximately 0.80. Thus, if the market is expected to increase 10% in the

129coming year, then one would expect IBM to return about 8%. The beta estimation of

130IBM as a function of the S&P 500 Index using the SAS system is shown in

131Table 2.1. The IBM beta is 0.80. The t-statistic of the beta coefficient, the slope

132of the regression line, is 5.56, which is highly statistically significant. The critical

1335% t-value is with 30 degrees of freedom 1.96, whereas the critical level of the t-
134statistic at the 10% is 1.645. The IBM beta is statistically different from zero. The

135IBM beta is not statistically different from one; the normalized z-statistical is
136significantly less than 1. That is, 0.80 � 1.00 divided by the regression coefficient

137standard error of 0.144 produces a Z-statistic of�1.39, which is less than the critical

138level of�1.645 (at the 10% level) or�1.96 (at the 5% critical level). The IBM beta

139is 0.78 (the corresponding t-statistic is 5.87) when calculated versus the value-

140weighted CRSP Index.2

2 See Fama, Foundations of Finance, 1976, Chapter 3, p. 101–2, for an IBM beta estimation with

an equally weighted CRSP Index.
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141 Let us examine another source of real-business economic and financial data. The

142 St. Louis Federal Reserve Bank has an economic database, denoted FRED,

143 containing some 41,000 economic series, available at no cost, via the Internet, at

144 http://research.stlouisfed.org/fred2. Readers are well aware that consumption

145 makes up the majority of real Gross Domestic Product, denoted GDP, the accepted

146 measure of output in our economy. Consumption is the largest expenditure, relative

147 to gross investment, government spending, and net exports in GDP data. If we

148 download and graph real GDP and real consumption expenditures from FRED from

149 1947 to 2011, shown in Chart 2, one finds that real GDP and real consumption

150 expenditures, in 2005 $, have risen substantially in the postwar period. Moreover,

151 there is a highly statistical significant relationship between real GDP and consump-

152 tion if one estimates an ordinary least squares (OLS) line of the form of (2.8) with

153 real GDP as the dependent variable and real consumption as the independent

154 variable. The reader is referred to Table 2.2.

t1:1 Table 2.1 WRDS IBM Beta 1/2005–12/2009

Dependent variable: rett1:2

Number of observations read: 60t1:3

Number of observations used: 60t1:4

Analysis of variancet1:5

Source DF Sum of squares Mean square F-value Pr > Ft1:6

Model 1 0.08135 0.08135 30.60 <0.0001t1:7

Error 58 0.15419 0.00266t1:8

Corrected total 59 0.23554t1:9

Root MSE 0.05156 R2 0.3454t1:10

Dependent mean 0.00808 Adjusted R2 0.3341t1:11

Coeff var 638.12982t1:12

Parameter estimatest1:13

Variable DF Parameter estimate Standard error t-Value Pr > |t|t1:14

Intercept 1 0.00817 0.00666 1.23 0.2244t1:15

Sprtrn 1 0.80063 0.14474 5.53 <0.0001t1:16

t2:1 Table 2.2 An Estimated Consumption Function, 1947–2011

Dependent variable: RPCEt2:2

Method: least squarest2:3

Sample(adjusted): 1,259t2:4

Included observations: 259 after adjusting endpointst2:5

Variable Coefficient Std. error t-Statistic Prob.t2:6

C �120.0314 12.60258 �9.524349 0.0000t2:7

RPDI 0.933251 0.002290 407.5311 0.0000t2:8

R2 0.998455 Mean dependent var 4,319.917t2:9

Adjusted R2 0.998449 S.D. dependent var 2,588.624t2:10

S.E. of regression 101.9488 Akaike info criterion 12.09451t2:11

Sum squared resid 2,671,147 Schwarz criterion 12.12198t2:12

Log likelihood �1,564.239 F-statistic 166,081.6t2:13

Durbin–Watson stat 0.197459 Prob(F-statistic) 0.000000t2:14
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155Source: US Department of Commerce, Bureau of Economic Analysis, Series

156GDPC1 and PCECC96, 1947–2011, seasonally-adjusted, Chained 2005 Dollars

157The slope of consumption function is 0.93, and is highly statistically significant AU3.3

158The introduction of current and lagged income variables in the consumption

159function regression produces statistically significant coefficients on both current

160and lagged income, although the lagged income variable is statistically significant

161at the 10% level. The estimated regression line, shown in Table 2.3, is highly

162statistically significant.

t3:1Table 2.3 An estimated consumption function, with lagged income

Dependent variable: RPCE t3:2

Method: least squares t3:3

Sample(adjusted): 2,259 t3:4

Included observations: 258 after adjusting endpoints t3:5

Variable Coefficient Std. error t-Statistic Prob. t3:6

C �118.5360 12.73995 �9.304274 0.0000 t3:7

RPDI 0.724752 0.126290 5.738800 0.0000 t3:8

LRPDI 0.209610 0.126816 1.652864 0.0996 t3:9

R2 0.998470 Mean dependent var 4,332.278 t3:10

Adjusted R2 0.998458 S.D. dependent var 2,585.986 t3:11

S.E. of regression 101.5529 Akaike info criterion 12.09060 t3:12

Sum squared resid 2,629,810 Schwarz criterion 12.13191 t3:13

Log likelihood �1,556.687 F-statistic 83,196.72 t3:14

Durbin–Watson stat 0.127677 Prob(F-statistic) 0.000000 t3:15

3 In recent years the marginal propensity to consume has risen to the 0.90 to 0.97 range, see Joseph

Stiglitz, Economics, 1993, p.745.
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163 The introduction of current and once- and twice-lagged income variables in the

164 consumption function regression produces statistically significant coefficients on both

165 current and lagged income, although the lagged income variable is statistically

166 significant at the 20% level. The twice-lagged income variable is not statistically

167 significant. The estimated regression line, shown in Table 2.4, is highly

168 statistically significant.

169 Autocorrelation

170 An estimated regression equation is plagued by the first-order correlation of

171 residuals. That is, the regression error terms are not white noise (random) as is

172 assumed in the general linear model, but are serially correlated where

et ¼ ret¼1 þ Ut; t ¼ 1; 2; . . . ;N (2.17)

173 et ¼ regression error term at time t, r ¼ first-order correlation coefficient, and

174 Ut ¼ normally and independently distributed random variable.

175 The serial correlation of error terms, known as autocorrelation, is a violation

176 of a regression assumption and may be corrected by the application of the

177 Cochrane–Orcutt (CORC) procedure.4 Autocorrelation produces unbiased, the

178 expected value of parameter is the population parameter, but inefficient parameters.

179 The variances of the parameters are biased (too low) among the set of linear

180 unbiased estimators and the sample t- and F-statistics are too large. The CORC

4D. Cochrane and G.H. Orcutt, “Application of Least Squares Regression to Relationships

Containing Autocorrelated Error Terms,” Journal of the American Statistical Association, 1949,
44: 32–61.

t4:1 Table 2.4 An estimated consumption function, with twice-lagged consumption

Dependent variable: RPCEt4:2

Method: least squarest4:3

Included observations: 257 after adjusting endpointst4:4

Variable Coefficient Std. error t-Statistic Prob.t4:5

C �120.9900 12.92168 �9.363331 0.0000t4:6

RPDI 0.736301 0.126477 5.821607 0.0000t4:7

LRPDI 0.229046 0.177743 1.288633 0.1987t4:8

L2RPDI �0.030903 0.127930 �0.241557 0.8093t4:9

R2 0.998474 Mean dependent var 4,344.661t4:10

Adjusted R2 0.998456 S.D. dependent var 2,583.356t4:11

S.E. of regression 101.5049 Akaike info criterion 12.09353t4:12

Sum squared resid 2,606,723 Schwarz criterion 12.14877t4:13

Log likelihood �1,550.019 F-statistic 55,188.63t4:14

Durbin–Watson stat 0.130988 Prob(F-statistic) 0.000000t4:15
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181procedure was developed to produce the best linear unbiased estimators (BLUE)

182given the autocorrelation of regression residuals. The CORC procedure uses the

183information implicit in the first-order correlative of residuals to produce unbiased

184and efficient estimators:

Yt ¼ aþ bXt þ et

r̂ ¼
P

et; et � 1P
e2t � 1

:

185The dependent and independent variables are transformed by the estimated rho,

186r̂, to obtain more efficient OLS estimates:

Yt � rYt�1 ¼ a l� rð Þ þ b Xt � rXt�1ð Þ þ ut: (2.19)

187The CORC procedure is an iterative procedure that can be repeated until the

188coefficients converge. One immediately recognizes that as r approaches unity the

189regression model approaches a first-difference model.

190The Durbin–Watson, D–W, statistic was developed to test for the absence of

191autocorrelation:

192H0: r ¼ 0.

193One generally tests for the presence of autocorrelation (r ¼ 0) using the

194Durbin–Watson statistic:

D�W ¼ d ¼
PN
t¼2

ðet ¼ et�1Þ2

PN
t¼2

e2t

: (2.20)

195The es represent the OLS regression residuals and a two-tailed tail is employed

196to examine the randomness of residuals. One rejects the null hypothesis of no

197statistically significant autocorrelation if

d<dL or d>4� dU;

198where dL is the “lower” Durbin–Watson level and dU is the “upper” Durbin–Watson

199level.

200The upper and lower level Durbin–Watson statistic levels are given in Johnston

201(1972). The Durbin–Watson statistic is used to test only for first-order correlation

202among residuals.

D ¼ 2 1� rð Þ: (2.21)

203If the first-order correlation of model residuals is zero, the Durbin–Watson

204statistic is 2. A very low value of the Durbin–Watson statistic, d < dL, indicates
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205 positive autocorrelation between residuals and produces a regression model that is

206 not statistically plagued by autocorrelation.

207 The inconclusive range for the estimated Durbin–Watson statistic is

dL<d<dU or 4� dU<4� dU:

208 One does not reject the null hypothesis of no autocorrelation of residuals if

209 dU < d < 4 � dU.
210 One of the weaknesses of the Durbin–Watson test for serial correlation is that

211 only first-order autocorrelation of residuals is examined; one should plot the

212 correlation of residual with various time lags

corr ðet; et�kÞ
213 to identify higher-order correlations among residuals.

214 The reader may immediately remember that the regressions shown in

215 Tables 2.1–2.3 had very low Durbin–Watson statistics and were plagued by auto-

216 correlation. We first-difference the consumption function variables and rerun the

217 regressions, producing Tables 2.5–2.7. The R2 values are lower, but the regressions

218 are not plagued by autocorrelation. In financial economic modeling, one generally

219 first-differences the data to achieve stationarity, or a series with a constant standard

220 deviation.

221 The introduction of current and lagged income variables in the consumption

222 function regression produces statistically significant coefficients on both current

223 and lagged income, although the lagged income variable is statistically significant

224 at the 10% level. The estimated regression line, shown in Table 2.6, is highly

225 statistically significant, and is not plagued by autocorrelation.

226 The introduction of current and lagged income variables in the consumption

227 function regression produces statistically significant coefficients on both current

228 and lagged income, statistically significant at the 1% level. The estimated regres-

229 sion line, shown in Table 2.5, is highly statistically significant, and is not plagued by

230 autocorrelation.

t5:1 Table 2.5 An estimated consumption function, 1947–2011

Dependent variable: D(RPCE)t5:2

Method: least squarest5:3

Included observations: 258 after adjusting endpointst5:4

Variable Coefficient Std. error t-Statistic Prob.t5:5

C 22.50864 2.290291 9.827849 0.0000t5:6

D(RPDI) 0.280269 0.037064 7.561802 0.0000t5:7

R2 0.182581 Mean dependent var 32.18062t5:8

Adjusted R2 0.179388 S.D. dependent var 33.68691t5:9

S.E. of regression 30.51618 Akaike info criterion 9.682113t5:10

Sum squared resid 238,396.7 Schwarz criterion 9.709655t5:11

Log likelihood �1,246.993 F-statistic 57.18084t5:12

Durbin-Watson stat 1.544444 Prob(F-statistic) 0.000000t5:13
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231The introduction of current and once- and twice-lagged income variables in the

232consumption function regression produces statistically significant coefficients on

233both current and lagged income, although the twice-lagged income variable is

234statistically significant at the 15% level. The estimated regression line, shown in

235Table 2.7, is highly statistically significant, and is not plagued by autocorrelation.

236Many economic time series variables increase as a function of time. In such

237cases, a nonlinear least squares (NLLS) model may be appropriate; one seeks to

238estimate an equation in which the dependent variable increases by a constant

239growth rate rather than a constant amount AU4.5 The nonlinear regression equation is

t6:1Table 2.6 An estimated consumption function, with lagged income

Dependent variable: D(RPCE) t6:2

Method: least squares t6:3

Included observations: 257 after adjusting endpoints t6:4

Variable Coefficient Std. error t-Statistic Prob. t6:5

C 14.20155 2.399895 5.917570 0.0000 t6:6

D(RPDI) 0.273239 0.034027 8.030014 0.0000 t6:7

D(LRPDI) 0.245108 0.034108 7.186307 0.0000 t6:8

R2 0.320314 Mean dependent var 32.23268 t6:9

Adjusted R2 0.314962 S.D. dependent var 33.74224 t6:10

S.E. of regression 27.92744 Akaike info criterion 9.508701 t6:11

Sum squared resid 198,105.2 Schwarz criterion 9.550130 t6:12

Log likelihood �1,218.868 F-statistic 59.85104 t6:13

Durbin-Watson stat 1.527716 Prob(F-statistic) 0.000000 t6:14

t7:1Table 2.7 An estimated consumption function, with twice-lagged consumption

Dependent variable: D(RPCE) t7:2

Method: least squares t7:3

Included observations: 256 after adjusting endpoints t7:4

Variable Coefficient Std. error t-Statistic Prob. t7:5

C 12.78746 2.589765 4.937692 0.0000 t7:6

D(RPDI) 0.262664 0.034644 7.581744 0.0000 t7:7

D(LRPDI) 0.242900 0.034162 7.110134 0.0000 t7:8

D(L2RPDI) 0.054552 0.034781 1.568428 0.1180 t7:9

R2 0.325587 Mean dependent var 32.34414 t7:10

Adjusted R2 0.317558 S.D. dependent var 33.76090 t7:11

S.E. of regression 27.88990 Akaike info criterion 9.509908 t7:12

Sum squared resid 196,017.3 Schwarz criterion 9.565301 t7:13

Log likelihood �1,213.268 F-statistic 40.55269 t7:14

Durbin–Watson stat 1.535845 Prob(F-statistic) 0.000000 t7:15

5 The reader is referred to C.T. Clark and L.L. Schkade, Statistical Analysis for Administrative

Decisions (Cincinnati: South-Western Publishing Company, 1979) and Makridakis, Wheelwright,

and Hyndman, Op. Cit., 1998, pages 221–225, for excellent treatments of this topic.
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Y ¼ abx

or log Y ¼ log aþ logBX:
(2.22)

240 The normal equations are derived from minimizing the sum of the squared error

241 terms (as in OLS) and may be written as

X
log Yð Þ ¼ N log að Þ þ log bð Þ

X
XX

X log Yð Þ ¼ log að Þ
X

X þ log bð Þ
X

X2:
(2.23)

242 The solutions to the simplified NLLS estimation equation are

log a ¼
P ðlog YÞ

N
(2.24)

log b ¼
P ðX log YÞP

X2
: (2.25)

243 Multiple Regression

244 It may well be that several economic variables influence the variable that one is

245 interested in forecasting. For example, the levels of the Gross National Product

246 (GNP), personal disposable income, or price indices can assert influences on the

247 firm. Multiple regression is an extremely easy statistical tool for researchers and

248 management to employ due to the great proliferation of computer software. The

249 general form of the two-independent variable multiple regression is

Yt ¼ b1 þ b2X2t þ b3X3t þ et; t ¼ 1; . . . ;N: (2.26)

250 In matrix notation multiple regression can be written:

Y ¼ Xbþ e: (2.27)

251 Multiple regression requires unbiasedness, the expected value of the error term

252 is zero, and the X’s are fixed and independent of the error term. The error term is an

253 identically and independently distributed normal variable. Least squares estimation

254 of the coefficients yields

b̂ ¼ ðb̂1; b̂2; b̂3Þ
Y ¼ Xb̂þ e:

(2.28)
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255Multiple regression, using the least squared principle, minimizes the sum of the

256squared error terms:

XN
i¼1

e21 ¼ e0e

ðY � Xb̂Þ0ðY � Xb̂Þ:
(2.29)

257To minimize the sum of the squared error terms, one takes the partial derivative

258of the squared errors with respect to b̂ and the partial derivative set equal to zero.

@
ðe0eÞ
@b

¼ �2X0Y þ 2X0Xb̂ ¼ 0 (2.30)

b̂ ¼ X0Xð Þ�1
X0Y:

259Alternatively, one could solve the normal equations for the two-variable to

260determine the regression coefficients.

X
Y ¼ b1N þ b̂2

X
X2 þ b̂3

X
X3X

X2Y ¼ b̂1
X

X2 þ b̂2X2
2 þ b̂3

X
X2
3X

X3Y ¼ b̂1
X

X3 þ b̂2
X

X2X3 þ b̂3
X

X2
3:

(2.31)

261When we solved the normal equation, (2.7), to find the a and b that minimized

262the sum of our squared error terms in simple liner regression, and when we solved

263the two-variable normal equation, equation (2.31), to find the multiple regression

264estimated parameters, we made several assumptions. First, we assumed that the

265error term is independently and identically distributed, i.e., a random variable with

266an expected value, or mean of zero, and a finite, and constant, standard deviation.

267The error term should not be a function of time, as we discussed with the

268Durbin–Watson statistic, equation (2.21), nor should the error term be a function

269of the size of the independent variable(s), a condition known as heteroscedasticity.

270One may plot the residuals as a function of the independent variable(s) to be certain

271that the residuals are independent of the independent variables. The error term

272should be a normally distributed variable. That is, the error terms should have an

273expected value of zero and 67.6% of the observed error terms should fall within the

274mean value plus and minus one standard deviation of the error terms (the so-called

275Bell Curve or normal distribution). Ninety-five percent of the observations should

276fall within the plus or minus two standard deviation levels, the so-called 95%

277confidence interval. The presence of extreme, or influential, observations may

278distort estimated regression lines and the corresponding estimated residuals.

279Another problem in regression analysis is the assumed independence of the
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280 independent variables in equation (2.31). Significant correlations may produce

281 estimated regression coefficients that are “unstable” and have the “incorrect”

282 signs, conditions that we will observe in later chapters. Let us spend some time

283 discussing two problems discussed in this section, the problems of influential

284 observations, commonly known as outliers, and the correlation among independent

285 variables, known as multicollinearity.

286 There are several methods that one can use to identify influential observations or

287 outliers. First, we can plot the residuals and 95% confidence intervals and examine

288 how many observations have residuals falling outside these limits. One should

289 expect no more than 5% of the observations to fall outside of these intervals. One

290 may find that one or two observations may distort a regression estimate even if there

291 are 100 observations in the database. The estimated residuals should be normally

292 distributed, and the ratio of the residuals divided by their standard deviation, known

293 as standardized residuals, should be a normal variable. We showed, in equation

294 (2.31), that in multiple regression

b̂ ¼ ðX0XÞX0Y:

295 The residuals of the multiple regression line are given by

e ¼ Y0 � b̂X:

296 The standardized residual concept can be modified such that the reader can

297 calculate a variation on that term to identify influential observations. If we delete

298 observation i in a regression, we can measure the change in estimated regression

299 coefficients and residuals. Belsley et al. (1980) showed that the estimated regres-

300 sion coefficients change by an amount, DFBETA, where

DFBETAi ¼ ðX0XÞ�1X0ei
1� hi

; (2.32)

301 where hi ¼ XiðX0XÞ�1X0
i:

302 The hi or “hat” term is calculated by deleting observation i. The corresponding
303 residual is known as the studentized residual, sr, and defined as

sri ¼ ei

ŝ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� hi

p ; (2.33)

304 where ŝ is the estimated standard deviation of the residuals. A studentized residual

305 that exceeds 2.0 indicates a potential influential observation (Belsley et al. 1980).

306 Another distance measure has been suggested by AU5Cook (1977), which modifies the

307 studentized residual, to calculate a scaled residual known as the Cook distance

308 measure, CookD. As the researcher or modeler deletes observations, one needs to
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309compare the original matrix of the estimated residual’s variance matrix. The

310COVRATIO calculation performs this calculation, where

COVRATIO ¼ 1

n�p�1
n�p þ e�i

ðn�pÞ
h ip

ð1� hiÞ
; (2.34)

311where n ¼ number of observations, p ¼ number of independent variables, and

312ei
* ¼ deleted observations.

313If the absolute value of the deleted observation >2, then the COVRATIO

314calculation approaches

1� 3p

n
: (2.35)

315A calculated COVRATIO that is larger than 3p/n indicates an influential obser-

316vation. The DFBETA, studentized residual, CookD, and COVRATIO calculations

317may be performed within SAS. The identification of influential data is an important

318component of regression analysis. One may create variables for use in multiple

319regression that make use of the influential data, or outliers, to which they are

320commonly referred.

321The modeler can identify outliers, or influential data, and rerun the OLS

322regressions on the re-weighted data, a process referred to as robust (ROB) regres-

323sion. In OLS all data is equally weighted. The weights are 1.0. In ROB regression

324one weights the data universally with its OLS residual; i.e., the larger the residual,

325the smaller the weight of the observation in the ROB regression. In ROB regression,

326several weights may be used. We will see the Huber (1973) and Beaton-Tukey

327(1974) weighting schemes in our analysis. In the Huber robust regression proce-

328dure, one uses the following calculation to weigh the data:

wi ¼ 1� eij j
si

� �2
 !2

; (2.36)

329where ei ¼ residual i, si ¼ standard deviation of residual, and wi ¼ weight of

330observation i.
331The intuition is that the larger the estimated residual, the smaller the weight.

332A second robust re-weighting scheme is calculated from the Beaton-Tukey

333biweight criteria where

wi ¼ 1�
eij j
se

4:685

0
BB@

1
CCA

20
BB@

1
CCA

2

; if
eij j
se

> 4:685;

1; if
eij j
se

< 4:685:

(2.37)
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334 A second major problem is one of multicollinearity, the condition of correlations

335 among the independent variables. If the independent variables are perfectly

336 correlated in multiple regression, then the (X0X) matrix of (2.31) cannot be inverted

337 and the multiple regression coefficients have multiple solutions. In reality, highly

338 correlated independent variables can produce unstable regression coefficients due

339 to an unstable (X0X)�1 matrix. Belsley et al. advocate the calculation of a condition

340 number, which is the ratio of the largest latent root of the correlation matrix relative

341 to the smallest latent root of the correlation matrix. A condition number exceeding

342 30.0 indicates severe multicollinearity.

343 The latent roots of the correlation matrix of independent variables can be used to

344 estimate regression parameters in the presence of multicollinearity. The latent

345 roots, l1, l2, . . ., lp and the latent vectors g1, g2, . . ., gp of the P independent

346 variables can describe the inverse of the independent variable matrix of (2.29 AU6).

ðX0XÞ�1 ¼
Xp
j¼1

l�1
j gjg

0
j:

347 Multicollinearity is present when one observes one or more small latent vectors.

348 If one eliminates latent vectors with small latent roots (l < 0.30) and latent vectors

349 (g < 0.10), the “principal component” or latent root regression estimator may be

350 written as

b̂LRR ¼
XP
j¼0

fjdj;

351

where fj ¼ ��g0lj
�1P

q

g2
0
lq

�1 ;

352 where AU7n2 ¼ Sðy� �yÞ2
353 and l are the “nonzero” latent vectors. One eliminates the latent vectors with

354 non-predictive multicollinearity. We use latent root regression on the Beaton-

355 Tukey weighted data in Chap. 4.

356 The Conference Board Composite Index of Leading Economic

357 Indicators and Real US GDP Growth: A Regression Example

358 The composite indexes of leading (leading economic indicators, LEI), coincident,

359 and lagging indicators produced by The Conference Board are summary statistics

360 for the US economy. Wesley Clair Mitchell of Columbia University constructed the

361 indicators in 1913 to serve as a barometer of economic activity. The leading

362 indicator series was developed to turn upward before aggregate economic activity

363 increased, and decrease before aggregate economic activity diminished.
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364Historically, the cyclical turning points in the leading index have occurred before

365those in aggregate economic activity, cyclical turning points in the coincident index

366have occurred at about the same time as those in aggregate economic activity, and

367cyclical turning points in the lagging index generally have occurred after those in

368aggregate economic activity.

369The Conference Board’s components of the composite leading index for the

370year 2002 reflects the work and variables shown in Zarnowitz (1992) list, which

371continued work of the Mitchell (1913, AU81927, 1951), Burns and Mitchell (1946), and

372Moore (1961). The Conference Board index of leading indicators is composed of

3731. Average weekly hours (mfg.)

3742. Average weekly initial claims for unemployment insurance

3753. Manufacturers’ new orders for consumer goods and materials

3764. Vendor performance

3775. Manufacturers’ new orders of nondefense capital goods

3786. Building permits of new private housing units

3797. Index of stock prices

3808. Money supply

3819. Interest rate spread

38210. Index of consumer expectations

383The Conference Board composite index of LEI is an equally weighted index in

384which its components are standardized to produce constant variances. Details of the

385LEI can be found on The Conference Board Web site, www.conference-board.org,

386and the reader is referred to Zarnowitz (1992) for his seminal development of

387underlying economic assumption and theory of the LEI and business cycles AU9

388(Table 2.8).

389Let us illustrate a regression of real US GDP as a function of current and lagged

390LEI. The regression coefficient on the LEI variable, 0.232, in Table 2.9, is highly

391statistically significant because the calculated t-value of 6.84 exceeds 1.96, the 5%

392critical level. One can reject the null hypothesis of no association between the

393growth rate of US GDP and the growth rate of the LEI. The reader notes, however,

394that we estimated the regression line with current, or contemporaneous, values of

395the LEI series.

396The LEI series was developed to “forecast” future economic activity such that

397current growth of the LEI series should be associated with future US GDP growth

398rates. Alternatively, one can examine the regression association of the current

399values of real US GDP growth and previous or lagged values, of the LEI series.

400How many lags might be appropriate? Let us estimate regression lines using up to

401four lags of the US LEI series. If one estimates multiple regression lines using the

402EViews software, as shown in Table 2.10, the first lag of the LEI series is statisti-

403cally significant, having an estimated t-value of 5.73, and the second lag is also

404statistically significant, having an estimated t-value of 4.48. In the regression

405analysis using three lags of the LEI series, the first and second lagged variables

406are highly statistically significant, and the third lag is not statistically significant

407because third LEI lag variable has an estimated t-value of only 0.12. The critical
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408 t-level at the 10% level is 1.645, for 30 observations, and statistical studies often use

409 the 10% level as a minimum acceptable critical level. The third lag is not statisti-

410 cally significant in the three quarter multiple regression analysis. In the four quarter

411 lags analysis of the LEI series, we report that the lag one variable has a t-statistic of

t8:1 Table 2.8 The conference board leading, coincident, and lagging indicator components

Leading index

Standardization

factort8:2

1 BCI-01 Average weekly hours, manufacturing 0.1946t8:3

2 BCI-05 Average weekly initial claims for unemployment insurance 0.0268t8:4

3 BCI-06 Manufacturers’ new orders, consumer goods and materials 0.0504t8:5

4 BCI-32 Vendor performance, slower deliveries diffusion index 0.0296t8:6

5 BCI-27 Manufacturers’ new orders, nondefense capital goods 0.0139t8:7

6 BCI-29 Building permits, new private housing units 0.0205t8:8

7 BCI019 Stock prices, 500 common stocks 0.0309t8:9

8 BCI-106 Money supply, M2 0.2775t8:10

9 BCI-129 Interest rate spread, 10-year Treasury bonds less federal funds 0.3364t8:11

10 BCI-83 Index of consumer expectations 0.0193t8:12

Coincident indext8:13

1 BCI-41 Employees on nonagricultural payrolls 0.5186t8:14

2 BCI-51 Personal income less transfer payments 0.2173t8:15

3 BCI-47 Industrial production 0.1470t8:16

4 BCI-57 Manufacturing and trade sales 0.1170t8:17

Lagging indext8:18

1 BCI-91 Average duration of unemployment 0.0368t8:19

2 BCI-77 Inventories-to-sales ratio, manufacturing and trade 0.1206t8:20

3 BCI-62 Labor cost per unit of output, manufacturing 0.0693t8:21

4 BCI-109 Average prime rate 0.2692t8:22

5 BCI-101 Commercial and industrial loans 0.1204t8:23

6 BCI-95 Consumer installment credit-to-personal income ratio 0.1951t8:24

7 BCI-120 Consumer price index for services 0.1886t8:25

t9:1 Table 2.9 Real US GDP and the leading indicators: A contemporaneous examination

Dependent variable: DLOG(RGDP)t9:2

Sample(adjusted): 2,210t9:3

Included observations: 209 after adjusting endpointst9:4

Variable Coefficient Std. error t-Statistic Prob.t9:5

C 0.006170 0.000593 10.40361 0.0000t9:6

DLOG(LEI) 0.232606 0.033974 6.846529 0.0000t9:7

R2 0.184638 Mean dependent var 0.007605t9:8

Adjusted R2 0.180699 S.D. dependent var 0.008860t9:9

S.E. of regression 0.008020 Akaike info criterion �6.804257t9:10

Sum squared resid 0.013314 Schwarz criterion �6.772273t9:11

Log likelihood 713.0449 F-statistic 46.87497lt9:12

Durbin–Watson stat 1.594358 Prob(F-statistic) 0.000000t9:13

38 2 Regression Analysis and Forecasting Models



4123.36, highly significant; the second lag has a t-statistic of 4.05, which is statistically
413significant; the third LEI lag variable has a t-statistic of �0.99, not statistically

414significant at the 10% level; and the fourth LEI lag variable has an estimated

415t-statistic of 1.67, which is statistically significant at the 10% level. The estimation

416of multiple regression lines would lead the reader to expect a one, two, and four

417variable lag structure to illustrate the relationship between real US GDP growth and

418The Conference Board LEI series. The next chapter develops the relationship using

419time series and forecasting techniques. This chapter used regression analysis to

420illustrate the association between real US GDP growth and the LEI series.

421The reader is referred to Table 2.11 for EViews output for the multiple regres-

422sion of the US real GDP and four quarterly lags in LEI.

t10:1Table 2.10 Real GDP and the conference board leading economic indicators

1959 Q1–2011 Q2 t10:2

Lags (LEI) t10:3

Model Constant LEI One Two Three Four R2 F-statistic t10:4

RGDP 0.006 0.232 0.181 46.875 t10:5

(t) 10.400 6.850 t10:6

RGDP 0.056 0.104 0.218 0.285 42.267 t10:7

9.910 2.750 5.730 t10:8

RGDP 0.005 0.095 0.136 0.162 0.353 38.45 t10:9

9.520 2.600 3.260 4.480 t10:10

RGDP 0.005 0.093 0.135 0.164 0.005 0.351 28.679 t10:11

9.340 2.530 3.220 3.900 0.120 t10:12

RGDP 0.005 0.098 0.140 0.167 �0.041 0.061 0.369 24.862 t10:13

8.850 2.680 3.360 4.050 �0.990 1.670 t10:14

t11:1Table 2.11 The REG procedure

Dependent variable: DLUSGDP t11:2

Sample(adjusted): 6,210 t11:3

Included observations: 205 after adjusting endpoints t11:4

Variable Coefficient Std. error t-Statistic Prob. t11:5

C 0.004915 0.000555 8.849450 0.0000 t11:6

DLOG(LEI) 0.098557 0.036779 2.679711 0.0080 t11:7

DLOG(L1LEI) 0.139846 0.041538 3.366687 0.0009 t11:8

DLOG(L2LEI) 0.167168 0.041235 4.054052 0.0001 t11:9

DLOG(L3LEI) �0.041170 0.041305 �0.996733 0.3201 t11:10

DLOG(L4LEI) 0.060672 0.036401 1.666786 0.0971 t11:11

R2 0.384488 Mean dependent var 0.007512 t11:12

Adjusted R2 0.369023 S.D. dependent var 0.008778 t11:13

S.E. of regression 0.006973 Akaike info criterion �7.064787 t11:14

Sum squared resid 0.009675 Schwarz criterion �6.967528 t11:15

Log likelihood 730.1406 F-statistic 24.86158 t11:16

Durbin–Watson stat 1.784540 Prob(F-statistic) 0.000000 t11:17
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423 We run the real GDP regression with four lags of LEI data in SAS. We report the

424 SAS output in Table 2.12. The Belsley et al. (1980) condition index of 3.4 reveals

425 little evidence of multicollinearity and the collinearity diagnostics reveal no two

426 variables in a row exceeding 0.50. Thus, SAS allows the researcher to specifically

427 address the issue of multicollinearity. We will return to this issue in Chap. 4.

t12:1 Table 2.12 The REG procedure model: MODEL1

Dependent variable: dlRGDPt12:2

Number of observations read: 209t12:3

Number of observations used: 205t12:4

Number of observations with missing values: 4t12:5

Analysis of variancet12:6

Source DF Sum of squares Mean

square

F-value Pr > Ft12:7

Model 5 0.00604 0.00121 24.85 <0.0001t12:8

Error 199 0.00968 0.00004864t12:9

Corrected

total

204 0.01572t12:10

Root MSE 0.00697 R2 0.3844t12:11

Dependent

mean

0.00751 Adjusted

R2
0.3689t12:12

Coeff. var 92.82825t12:13

Parameter estimatest12:14

Variable DF Parameter

estimate

Standard

error

t-Value Pr > |t| Variance

inflationt12:15

Intercept 1 0.00492 0.00055545 8.85 <0.0001 0t12:16

dlLEI 1 0.09871 0.03678 2.68 0.0079 1.52694t12:17

dlLEI_1 1 0.13946 0.04155 3.36 0.0009 1.94696t12:18

dlLEI_2 1 0.16756 0.04125 4.06 <0.0001 1.92945t12:19

dlLEI_3 1 �0.04121 0.04132 �1.00 0.3198 1.93166t12:20

dlLEI_4 1 0.06037 0.03641 1.66 0.0989 1.50421t12:21

Collinearity diagnosticst12:22

Number Eigenvalue Condition

index

t12:23

1 3.08688 1.00000t12:24

2 1.09066 1.68235t12:25

3 0.74197 2.03970t12:26

4 0.44752 2.62635t12:27

5 0.37267 2.87805t12:28

6 0.26030 3.44367t12:29

Proportion of variationt12:30

Number Intercept dlLEI dlLEI_1 dlLEI_2 dlLEI_3 dlLEI_4t12:31

1 0.02994 0.02527 0.02909 0.03220 0.02903 0.02481t12:32

2 0.00016369 0.18258 0.05762 0.00000149 0.06282 0.19532t12:33

3 0.83022 0.00047128 0.02564 0.06795 0.02642 0.00225t12:34

4 0.12881 0.32579 0.00165 0.38460 0.00156 0.38094t12:35

5 0.00005545 0.25381 0.41734 0.00321 0.44388 0.19691t12:36

6 0.01081 0.21208 0.46866 0.51203 0.43629 0.19977t12:37
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428The SAS estimates of the regression model reported in Table 2.12 would lead the

429reader to believe that the change in real GDP is associated with current, lagged, and

430twice-lagged LEI.

431Alternatively, one could use Oxmetrics, an econometric suite of products for

432data analysis and forecasting, to reproduce the regression analysis shown in

433Table 2.13.6

434An advantage to Oxmetrics is its Automatic Model selection procedure that

435addresses the issue of outliers. One can use the Oxmetrics Automatic Model

436selection procedure and find two statistically significant lags on LEI and three

437outliers: the economically volatile periods of 1971, 1978, and (the great recession

438of) 2008 AU11(Table 2.14).

439The reader clearly sees the advantage of the Oxmetrics Automatic Model

440selection procedure.

t13:1Table 2.13 Modeling dlRGDP by OLS

Coefficient Std. error t-Value t-Prob
Part.

R2 t13:2

Constant 0.00491456 0.0005554 8.85 0.0000 0.2824 t13:3

dlLEI 0.0985574 0.03678 2.68 0.0080 0.0348 t13:4

dlLEI_1 0.139846 0.04154 3.37 0.0009 0.0539 t13:5

dlLEI_2 0.167168 0.04123 4.05 0.0001 0.0763 t13:6

dlLEI_3 �0.0411702 0.04131 �0.997 0.3201 0.0050 t13:7

dlLEI_4 0.0606721 0.03640 1.67 0.0971 0.0138 t13:8

Sigma 0.00697274 RSS 0.00967519164 t13:9

R2 0.384488; F(5,199) ¼ 24.86 [0.000] AU10** t13:10

Adjusted R2 0.369023 Log-likelihood 730.141 t13:11

No. of

observations

205 No. of

parameters

6 t13:12

Mean(dlRGDP) 0.00751206 S.E.(dlRGDP) 0.00877802 t13:13

AR 1–2 test: F(2,197) ¼ 3.6873

[0.0268]*

t13:14

ARCH 1–1 test: F(1,203) ¼ 1.6556

[0.1997]

t13:15

Normality test: Chi-squared(2) ¼ 17.824

[0.0001]**

t13:16

Hetero test: F(10,194) ¼ 0.86780

[0.5644]

t13:17

Hetero-X test: F(20,184) ¼ 0.84768

[0.6531]

t13:18

RESET23 test: F(2,197) ¼ 2.9659

[0.0538]

t13:19

6 Ox Professional version 6.00 (Windows/U) (C) J.A. Doornik, 1994–2009, PcGive 13.0.See

Doornik and Hendry (2009a, b).
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441 Summary

442 In this chapter, we introduced the reader to regression analysis and various estima-

443 tion procedures. We have illustrated regression estimations by modeling consump-

444 tion functions and the relationship between real GDP and The Conference Board

445 LEI. We estimated regressions using EViews, SAS, and Oxmetrics. There are many

446 advantages with the various regression software with regard to ease of use, outlier

447 estimations, collinearity diagnostics, and automatic modeling procedures. We will

448 use the regression techniques in Chap. 4.

449 Appendix

450 Let us follow The Conference Board definitions of the US LEI series and its

451 components:

t14:1 Table 2.14 Modeling dlRGDP by OLS

Coefficient Std. error t-Value t-Prob
Part.

R2t14:2

Constant 0.00519258 0.0004846 10.7 0.0000 0.3659t14:3

dlLEI_1 0.192161 0.03312 5.80 0.0000 0.1447t14:4

dlLEI_2 0.164185 0.03281 5.00 0.0000 0.1118t14:5

I:1971-01-01 0.0208987 0.006358 3.29 0.0012 0.0515t14:6

I:1978-04-01 0.0331323 0.006352 5.22 0.0000 0.1203t14:7

I:2008-10-01 �0.0243503 0.006391 �3.81 0.0002 0.0680t14:8

Sigma 0.00633157 RSS 0.00797767502t14:9

R2 0.49248 F(5,199) ¼ 38.62

[0.000]** AU12

t14:10

Adjusted R2 0.479728 Log-likelihood 749.915t14:11

No. of

observations

205 No. of parameters 6t14:12

Mean(dlRGDP) 0.00751206 se(dlRGDP) 0.00877802t14:13

AR 1–2 test: F(2,197) ¼ 3.2141

[0.0423]*

t14:14

ARCH 1–1 test: F(1,203) ¼ 2.3367

[0.1279]

t14:15

Normality test: Chi-squared

(2) ¼ 0.053943

[0.9734]

t14:16

Hetero test: F(4,197) ¼ 3.2294

[0.0136]*

t14:17

Hetero-X test: F(5,196) ¼ 2.5732

[0.0279]*

t14:18

RESET23 test: F(2,197) ¼ 1.2705

[0.2830]

t14:19
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452Leading Index Components

453BCI-01 Average weekly hours, manufacturing. The average hours worked per week
454by production workers in manufacturing industries tend to lead the business cycle

455because employers usually adjust work hours before increasing or decreasing their

456workforce.

457BCI-05 Average weekly initial claims for unemployment insurance. The number of

458new claims filed for unemployment insurance is typically more sensitive than either

459total employment or unemployment to overall business conditions, and this series

460tends to lead the business cycle. It is inverted when included in the leading index;

461the signs of the month-to-month changes are reversed, because initial claims

462increase when employment conditions worsen (i.e., layoffs rise and new hirings

463fall).

464BCI-06 Manufacturers’ new orders, consumer goods and materials (in 1996 $).
465These goods are primarily used by consumers. The inflation-adjusted value of new

466orders leads actual production because new orders directly affect the level of both

467unfilled orders and inventories that firms monitor when making production

468decisions. The Conference Board deflates the current dollar orders data using

469price indexes constructed from various sources at the industry level and a chain-

470weighted aggregate price index formula.

471BCI-32 Vendor performance, slower deliveries diffusion index. This index

472measures the relative speed at which industrial companies receive deliveries from

473their suppliers. Slowdowns in deliveries increase this series and are most often

474associated with increases in demand for manufacturing supplies (as opposed to a

475negative shock to supplies) and, therefore, tend to lead the business cycle. Vendor

476performance is based on a monthly survey conducted by the National Association

477of Purchasing Management (NAPM) that asks purchasing managers whether their

478suppliers’ deliveries have been faster, slower, or the same as the previous month.

479The slower-deliveries diffusion index counts the proportion of respondents

480reporting slower deliveries, plus one-half of the proportion reporting no change in

481delivery speed.

482BCI-27 Manufacturers’ new orders, nondefense capital goods (in 1996 $). New
483orders received by manufacturers in nondefense capital goods industries (in

484inflation-adjusted dollars) are the producers’ counterpart to BCI-06.

485BCI-29 Building permits, new private housing units. The number of residential

486building permits issued is an indicator of construction activity, which typically

487leads most other types of economic production.

488BCI-19 Stock prices, 500 common stocks. The Standard & Poor’s 500 stock index

489reflects the price movements of a broad selection of common stocks traded on the

490New York Stock Exchange. Increases (decreases) of the stock index can reflect both
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491 the general sentiments of investors and the movements of interest rates, which is

492 usually another good indicator for future economic activity.

493 BCI-106 Money supply (in 1996 $). In inflation-adjusted dollars, this is the M2

494 version of the money supply. When the money supply does not keep pace with

495 inflation, bank lending may fall in real terms, making it more difficult for the

496 economy to expand. M2 includes currency, demand deposits, other checkable

497 deposits, travelers checks, savings deposits, small denomination time deposits,

498 and balances in money market mutual funds. The inflation adjustment is based on

499 the implicit deflator for personal consumption expenditures.

500 BCI-129 Interest rate spread, 10-year Treasury bonds less federal funds. The
501 spread or difference between long and short rates is often called the yield curve.

502 This series is constructed using the 10-year Treasury bond rate and the federal funds

503 rate, an overnight interbank borrowing rate. It is felt to be an indicator of the stance

504 of monetary policy and general financial conditions because it rises (falls) when

505 short rates are relatively low (high). When it becomes negative (i.e., short rates are

506 higher than long rates and the yield curve inverts) its record as an indicator of

507 recessions is particularly strong.

508 BCI-83 Index of consumer expectations. This index reflects changes in consumer

509 attitudes concerning future economic conditions and, therefore, is the only indicator

510 in the leading index that is completely expectations-based. Data are collected in a

511 monthly survey conducted by the University of Michigan’s Survey Research

512 Center. Responses to the questions concerning various economic conditions are

513 classified as positive, negative, or unchanged. The expectations series is derived

514 from the responses to three questions relating to (1) economic prospects for the

515 respondent’s family over the next 12 months; (2) economic prospects for the Nation

516 over the next 12 months; and (3) economic prospects for the Nation over the next

517 5 years.
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1Chapter 3

2An Introduction to Time Series Modeling

3and Forecasting

4An important aspect of financial decision making may depend on the forecasting

5effectiveness of the composite index of leading economic indicators, LEI. The

6leading indicators can be used as an input to a transfer function model of real Gross

7Domestic Product, GDP. The previous chapter employed four quarterly lags of the

8LEI series to estimate regression models of association between current rates of

9growth of real US GDP and the composite index of LEI. This chapter asks the

10question as to whether changes in forecasted economic indexes help forecast

11changes in real economic growth. The transfer function model forecasts are com-

12pared to several naı̈ve models in terms of testing which model produces the most

13accurate forecast of real GDP. No-change (NoCH) forecasts of real GDP and

14random walk with drift (RWD) models may be useful forecasting benchmarks

15(Mincer and Zarnowitz 1969; Granger and Newbold 1977). Economists have

16constructed LEI series to serve as a business barometer of the changing US

17economy since the time of Mitchell (1913). The purpose of this study is to examine

18the time series forecasts of composite economic indexes produced by The Confer-

19ence Board (TCB), and test the hypothesis that the leading indicators are useful as

20an input to a time series model to forecast real output in the United States.

21Economic indicators are descriptive and anticipatory time series data used to

22analyze and forecast changing business conditions. Cyclical indicators are compre-

23hensive series that are systemically related to the business cycle. Business cycles

24are recurrent sequences of expansions and contractions in aggregate economic

25activity. Coincident indicators have cyclical movements that approximately corre-

26spond with the overall business cycle expansions and contractions. Leading

27indicators reach their turning points before the corresponding business cycle

28turns. The lagging indicators reach their turning points after the corresponding

29turns in the business cycle.

30An example of business cycles can be found in the analysis of Irving Fisher

31(1911) AU1, who discussed how changes in the money supply lead to rising prices and an

32initial fall in the rate of interest, and how this results in raising profits, creating

33a boom. The interest rate later rises, reducing profits, and ending the boom.

34A financial crisis ensues when businessmen, whose loan collateral is falling as

J.B. Guerard, Jr., Introduction to Financial Forecasting in Investment Analysis,
DOI 10.1007/978-1-4614-5239-3_3, # Springer Science+Business Media New York 2013
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35 interest rates rise, run to cash and banks fail. The money supply is one series in TCB

36 index of leading economic indexes, AU2LEI.

37 Section “ARMA Model Identification in Practice” of this chapter presents an

38 introduction to the models that are estimated and tested in the analysis of the

39 forecasting effectiveness of the leading indicators. Section “Modeling Real GDP:

40 An Example” presents the empirical evidence to support the time series models and

41 reports how models adequately describe the data. Out-of-sample forecasting results

42 are shown in Section “Leading Economic Indicators (LEI) and Real GDP Analysis:

43 The Statistical Evidence, 1970–2002” for the United States and the G7 nations.1 We

44 present additional evidence on out-of-sample forecasting for the Yen exchange,

45 consumption–income relationship, and Real GDP and LEI transfer function

46 modeling.

47 Basic Statistical Properties of Economic Series

48 This chapter develops and forecasts models of economic time series in which we

49 initially use only the past history of the series. The chapter later explores explana-

50 tory variables in the forecast models. The time series modeling approach of Box and

51 Jenkins involves the identification, estimation, and forecasting of stationary (or

52 series transformed to stationarity) series through the analysis of the series autocor-

53 relation and partial autocorrelation (PAC) functions.2 The autocorrelation function

54 examines the correlations of the current value of the economic times series and its

55 previous k-lags. That is, one can measure the correlation of a daily series, of shares,

56 or other assets, by calculating

pjt ¼ aþ bpjt�1; (3.1)

57 where pjt ¼ today’s price of stock j; pjt�1 ¼ yesterday’s price of stock j; and b is

58 the correlation coefficient.

59 In a daily shares price series, b is quite large, often approaching a value of 1.00.

60 As the number of lags or previous number of periods increases, the correlation tends

61 to fall. The decrease is usually very gradual.

62 The PAC function examines the correlation between pjt and pjt�2, holding

63 constant the association between pjt and pjt�1. If a series follows a random walk,

64 the correlation between pjt and pjt�1 is one, and the correlation between pjt and pjt�2,

65 holding constant the correlation of pjt and pjt�1, is zero. Random walk series are

66 characterized with decaying autocorrelation functions and a PAC function with a

67 “spike” at lag one, and zeros thereafter. Stationarity implies that the joint

1 Section “ARMA Model Identification in Practice” can be omitted with little loss of continuity

with readers more interested in the application of time series models.
2 This section draws heavily from Box and Jenkins (1970, Chaps. 2 and 3).

48 3 An Introduction to Time Series Modeling and Forecasting



68probability [p(Z)] distribution P(Zt1,Zt2) is the same for all times t, t1, and t2 where
69the observations are separated by a constant time interval. The autocovariance of a

70time series at some lag or interval, k, is defined to be the covariance between Zt and
71Zt+k:

gk ¼ cov½Zt; Ztþk� ¼ E½ðZt � mÞðZtþk � mÞ�: (3.2)

72One must standardize the autocovariance, as one standardizes the covariance in

73traditional regression analysis, before one can quantify the statistically significant

74association between Zt and Zt+k. The autocorrelation of a time series is the

75standardization of the autocovariance of a time series relative to the variance of

76the time series, and the autocorrelation at lag k, rk, is bounded between +1 and �1:

rk¼
E½ðZt � mÞðZtþk � mÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðZt � mÞ2�E½ðZtþk � mÞ2�

q

¼ E½ðZt � mÞðZtþk � mÞ�
s2Z

¼ rk
r0
: (3.3)

77The autocorrelation function of the process, {rk}, represents the plotting of rk
78versus time, the lag of k. The autocorrelation function is symmetric about series and

79thus rk ¼ r�k; thus, time series analysis normally examines only the positive

80segment of the autocorrelation function. One may also refer to the autocorrelation

81function as the correlogram. The statistical estimates of the autocorrelation function

82are calculated from a finite series of N observations, Z1, Z2, Z3, . . ., Zn. The
83statistical estimate of the autocorrelation function at lag k, rk, is found by

rk ¼ Ck

C0

;

84where

Ck ¼ 1

N

XN�k

t¼1

ðZt � �ZÞðZtþk � �ZÞ; k ¼ 0; 1; 2; . . . ;K:

85Ck is, of course, the statistical estimate of the autocovariance function at lag k.
86In identifying and estimating parameters in a time series model, one seeks to

87identify orders (lags) of the time series that are statistically different from zero.

88The implication of testing whether an autocorrelation estimate is statistically

89different from zero leads one back to the t-tests used in regression analysis to

90examine the statistically significant association between variables. One must

91develop a standard error of the autocorrelation estimate such that a formal t-test
92can be performed to measure the statistical significance of the autocorrelation

93estimate. Such a standard error, Se, estimate was found by Bartlett and, in large

94samples, is approximated by
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Var½rk� ffi 1

N
and Se½rk� ffi 1ffiffiffiffi

N
p : (3.4)

95 An autocorrelation estimate is considered statistically different from zero if it

96 exceeds approximately twice its standard error.

97 A second statistical estimate useful in time series analysis is the PAC estimate of

98 coefficient j at lag k, fkj. The PAC are found in the following manner:

rj ¼ fklpj�1 þ fk2pj�2 þ . . .þ fkðk�1Þpjk�1 þ fkkpj�k; j ¼ 1; 2; . . . ; k

99 or

1 r1 r2 . . . rk�1

r1 1 r1 . . . rk�2

..

. ..
. ..

.
. . . ..

.

rk�1 rk�2 rk�3 . . . 1

2
6664

3
7775

fk�1

fk2

..

.

fkk

2
6664

3
7775

r1
r2
..
.

rk

2
6664

3
7775:

100 The PAC estimates may be found by solving the above equation systems for

101 k ¼ 1, 2, 3, . . ., k:

f11 ¼ r1;

f22 ¼
r2 � r21
1� r21

¼
1 r1
r2 r2

����
����

1 r1
r1 1

����
����
;

f33 ¼

1 r1 r1
r1 1 r2
r2 r1 r3

������

������
1 r1 r2
r1 1 r1
r2 r1 1

������

������

:

102 The PAC function is estimated by expressing the current autocorrelation func-

103 tion estimates as a linear combination of previous orders of autocorrelation

104 estimates:

r̂1 ¼ f̂k1r j�1 þ f̂k22j�2 þ . . .þ f̂kðk�1Þr jþk�1 þ f̂kk2j�k; j ¼ 1; 2; . . . ; k:

105 The standard error of the PAC function is approximately

Var½f̂kk� ffi
1

N
and Se½fkk� ffi

1ffiffiffiffi
N

p :

50 3 An Introduction to Time Series Modeling and Forecasting



106The Autoregressive and Moving Average Processes

107A stochastic process, or time series, can be repeated as the output resulting from a

108white noise input, at:
3

~Zt¼ at þC1at�1 þC2at�2 þ . . .

¼ at þ
X1
j¼1

Cjat�j
: (3.5)

109The filter weight, Cj, transforms input into the output series. One normally

110expresses the output, ~Zt, as a deviation of the time series from its mean, m, or origin

~Zt ¼ Zt � m:

111The general linear process leads one to represent the output of a time series, ~Zt, as
112a function of the current and previous value of the white noise process, at, which
113may be represented as a series of shocks. The white noise process, at, is a series of
114random variables characterized by

E½at� ffi 0

Var½at� ¼ s2a
gk ¼ E½atatþk� ¼ s2a k 6¼ 0

0 k ¼ 0 :

115The autocorrelation function of a linear process may be given by

gk ¼ s2a
X1
j¼0

CjCjþk:

116The backward shift operator, B, is defined as BZt ¼ Zt�1 and BjZt ¼ Zt�j.
117The autocorrelation generating function may be written as

gðBÞ ¼
X1
k¼�1

gkB
k:

118For stationarity, the c weights of a linear process must satisfy that c(B)
119converges on or lies within the unit circle.

3 Please see Box and Jenkins, Time Series Analysis, Chap. 3, for the most complete discussion of

the ARMA (p,q) models.
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120 In an autoregressive, AR, model, the current value of the time series may be

121 expressed as a linear combination of the previous values of the series and a random

122 shock, at:

~Zt ¼ f1
~Zt�1 þ f2

~Zt�2 þ . . .þ fp
~Zt�p þ at:

123 The autoregressive operator of order P is given by

fðBÞ ¼ 1� f1B
1 � f2B

2 � . . .� fpB
p

124 or

fðBÞ ~Zt ¼ at: (3.6)

125 In an autoregressive model, the current value of the time series, ~Zt, is a function of
126 previous values of the time series, ~Zt�1 , ~Zt�2 , . . ., and is similar to a multiple

127 regression model. An autoregressive model of order p implies that only the first

128 p order weights are nonzero. In many economic time series, the relevant autogressive

129 order is one and the autoregressive process of order p, AR(p) is AU3written as

~Zt ¼ f1
~Zt�1 þ at

130 or

ð1� f1BÞ ~Zt ¼ at implying

~Zt ¼ f�1ðBÞat:

131 The relevant stationarity condition is jBj < 1 implying that jf1j < 1. The

132 autocorrelation function of a stationary autoregressive process

~Zt ¼ f1
~Zt�1 þ f2

~Zt�2 þ . . .þ fp
~Zt�p þ at

133 may be expressed by the difference equation

Pk ¼ f1rk�1 þ f2rk�2 þ . . .þ fkrk�p; k>0:

134 Or expressed in terms of the Yule-Walker equation as

r1 ¼ f1 þ f2r1 þ . . .þ fprp�1;

r2 ¼ f1r1 þ f2 þ . . .þ fprp�2;
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��rp ¼ f1rp�1 þ f2rp�2 þ . . .þ ��fp:

135For the first-order AR process, AR(1)

rk ¼ f1rk�1 ¼ ��fp:

136The autocorrelation function decays exponentially to zero when f1 is positive

137and oscillates in sign and decays exponentially to zero when f1 is negative:

P1 ¼ f1

138and

s2 ¼ s2a
1� f2

1

:

139The PAC function cuts off after lag one in an AR(1) process. For a second-order

140AR process, AR(2)

~Zt ¼ f1
~Zt�1 þ f2

~Zt�k þ at

141with roots

fðBÞ ¼ 1� f1B� f2B
2 ¼ 0

142and, for stationarity, roots lying outside the unit circle, f1 and f2, must obey the

143following conditions:

f2 þ f1<1;

f2 � f1<1;

� 1<f2<1:

144The autocorrelation function of an AR(2) model is

rk ¼ f1rk�1 þ f2rk�2: (3.7)

145The autocorrelation coefficients may be expressed in terms of the Yule-Walker

146equations as

r1 ¼ f1 þ f2r2;

r2 ¼ f1r1 þ f2;
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147 which implies

f1 ¼
r1ð1� r2Þ
1� r21

;

f2 ¼
r2ð1� r21Þ
1� r21

;

148 and

r1 ¼
f1

1� f2

and r2 ¼ f2 þ
f2
1

1� f2

149 .

150 For a stationary AR(2) process,

� 1<f1<1;

� 1<r2<1;

r21<
1

2
ðr2 þ 1Þ:

151 In an AR(2) process, the autocorrelation coefficients tail off after order two and

152 the PAC function cuts off after the second order (lag).4

153 In a q-order moving average (MA) model, the current value of the series can be

154 expressed as a linear combination of the current and previous shock variables:

~Zt¼ a1 � y1at�1 � . . .� aqyt�q

¼ ð1� y1B1 � . . .� yqBqÞat
¼ yðBÞat

:

155 The autocovariance function of a q-order moving average model is

gk ¼ E½ðat � y1at�1 � . . .� yqat�qÞðat�k � y1at�k�1 � . . .� yqat�k�qÞ�:

4 A stationary AR(p) process can be expressed as an infinite weighted sum of the previous shock

variables

~Zt ¼ f�1ðBÞat:
In an invertible time series, the current shock variable may be expressed as an infinite weighted

sum of the previous values of the series

y�1ðBÞ ~Zt ¼ at:
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156The autocorrelation function, rk, is

rk ¼
�yk þ y1ykþ1 þ . . .þ yq�kyq

1þ y21 þ . . .þ y2q
k ¼ 1; 2; . . . ; q

0 k>q

:

157The autocorrelation function of an MA(q) model cuts off, to zero, after lag q and
158its PAC function tails off to zero after lag q. There are no restrictions on the moving

159average model parameters for stationarity; however, moving average parameters

160must be invertible. Invertibility implies that the p weights of the linear filter

161transforming the input into the output series, the p weights lie outside the unit circle:

pðBÞ ¼ C�1ðBÞ ¼
Xa
j¼0

fjBj:

162In a first-order moving average model, MA(1)

~Zt ¼ ð1� y1BÞat
163and the invertibility condition is jy1j < 1. The autocorrelation function of the MA

164(1) model is

rk ¼
�y1
1þ y21

k ¼ 1; k>2:

165The PAC function of an MA(1) process tails off after lag one and its autocorre-

166lation function cuts off after lag one.

167In a second-order moving average model, MA(2)

~Zt ¼ at � y1at�1 � y2at�2;

168the invertibility conditions require

y2<y1<1;

y2 � y1<1;

� 1<y2<1:

169The autocorrelation function of the MA(2) is

r1 ¼
�y1ð1� y2Þ
1þ y21 þ y21

;
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r2 ¼
�y2

1þ y21 þ y21
;

170 and

rk ¼ y for k>3:

171 The PAC function of an MA(2) tails off after lag two.

172 In many economic time series, it is necessary to employ a mixed autoregressive-

173 moving average (ARMA) model of the form

~Zt ¼ f1
~Zt�1 þ . . .þ fp

~Zt�p þ at � y1at�1 � . . .� yqat�q (3.8)

174 or

ð1� f1B� f2B
2 � . . .� ypBpÞ ~Zt ¼ ð1� y1B� y2B2 � . . .� yqBqÞat

175 that may be more simply expressed as

fðBÞ ~Zt ¼ yðBÞat:

176 The autocorrelation function of the ARMA model is

rk ¼ f1rk�1 þ f2rk�2 þ . . .þ fprk�p

177 or

fðBÞrk ¼ 0:

178 The first-order autoregressive–first-order moving average operator ARMA (1,1)

179 process is written as

~Zt � f1
~Zt�1 ¼ at � y1at�1

180 or

ð1� f1Þ ~Zt ¼ ð1� y1BÞat:

181 The stationary condition is �1 < f1 < 1 and the invertibility condition is �1

182 < f1 < 1. The first two autocorrelations of the ARMA (1,1) model are

r1 ¼
ð1� f1y1Þðf1 � y1Þ

1þ y21 � 2f1y1
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183and

r2 ¼ f1r1:

184The PAC function consists only of f11 ¼ r1 and has a damped exponential.

185An integrated stochastic progress generates a time series if the series is made

186stationary by differencing (applying a time-invariant filter) the data. In an

187integrated process, the general form of the time series model is

fðBÞð1� BÞdXt ¼ yðBÞet; (3.9)

188where f(B) and y(B) are the autoregressive and moving average polynominals in

189B of orders p and q, et is a white noise error term, and d is an integer representing the
190order of the data differencing. In economic time series, a first-difference of the data

191is normally performed.5 The application of the differencing operator, d, produces a
192stationary ARMA(p,q) process. The autoregressive integrated moving average,

193ARIMA, model is characterized by orders p, d, and q [ARIMA (p,d,q)]. Many

194economics series follow an RWD, and an ARMA (1,1) may be written as

�VdXt ¼ Xt � Xt�1 ¼ et þ bet�l:

195An examination of the autocorrelation function estimates may lead one to

196investigate using a first-difference model when the autocorrelation function

197estimates decay slowly. In an integrated process, the corr(Xt, Xt�t) is approximately

198unity for small values of time, t.

199ARMA Model Identification in Practice

200Time series specialists use many statistical tools to identify models; however, the

201sample autocorrelation and PAC function estimates are particularly useful in

202modeling. Univariate time series modeling normally requires larger data sets than

203regression and exponential smoothing models. It has been suggested that at least

20430–50 observations be used to obtain reliable estimates.6 One normally calculates

205the sample autocorrelation and PAC estimates for the raw time series and its first

206(and possibly second) differences. The failure of the autocorrelation function

207estimates of the raw data series to die out as large lags implies that a first difference

208is necessary. The autocorrelation function estimates of a MA(q) process should cut

5 Box and Jenkins, Time Series Analysis. Chapter 6; C.W.J. Granger and Paul Newbold,

Forecasting Economic Time Series. Second Edition (New York: Academic Press, 1986),

pp. 109–110, 115–117, 206.
6 Granger and Newbo1d, Forecasting Economic Time Series. pp. 185–186.
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209 off after q. To test whether the autocorrelation estimates are statistically different

210 from zero, one uses a t-test where the standard error of ut is7

n�1=2½1þ 2ðr21 þ r22 þ . . .þ r2qÞ�1=2 for t>q:

211 The PAC function estimates of an AR(p) process cut off after lag p. A t-test is
212 used to statistically examine whether the PAC are statistically different from zero.

213 The standard error of the PAC estimates is approximately

1ffiffiffiffi
N

p for K>p:

214 One can use the normality assumption of large samples in the t-tests of the

215 autocorrelation and PAC estimates. The identified parameters are generally consid-

216 ered statistically significant if the parameters exceed twice the standard errors.

217 The ARMA model parameters may be estimated using nonlinear least squares.

218 Given the following ARMA framework generally pack-forecasts the initial param-

219 eter estimates and assumes that the shock terms are to be normally AU4distributed:

at ¼ ~Wt � f1
~Wt�1 � f2

~Wt�2 � . . . � fp
~Wt�p þ y1at�1 þ . . .þ yqat�q;

220 where

Wt ¼ �VdZt and ~Wt ¼ Wt � m:

221 The minimization of the sum of squared errors with respect to the autoregressive

222 and moving average parameter estimates produces starting values for the p order

223 AR estimates and q order MA estimates:

@et
�@fj

b0 ¼ mj;t and
@et
�@yi

����
����
b0

¼ Xj;t:

224 It may be appropriate to transform a series of data such that the residuals of a

225 fitted model have a constant variance, or are normally distributed. The log transfor-

226 mation is such a data transformation that is often used in modeling economic time

227 series. Box and Cox (1964) put forth a series of power transformations useful in

228 modeling time series.8 The data is transformed by choosing a value of l that is

7 Box and Jenkins, Time Series Analysis. pp. 173–179.
8 G.E. Box and D.R. Cox, “An Analysis of Transformations,” Journal of the Royal Statistical
Society, B 26 (1964), 211–243.
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229suggested by the relationship between the series amplitude (which may be

230approximated by the range of subsets) and mean:9

Xl
t ¼

Xl
t � 1

�X
l�1

; (3.10)

231where X is the geometric mean of the series. One immediately recognizes that if

232l ¼ 0, the series is a logarithmic transformation. The log transformation is appro-

233priate when there is a positive relationship between the amplitude and mean of the

234series. A l ¼ 1 implies that the raw data should be analyzed and there is no

235relationship between the series range and mean subsets. One generally selects the

236l that minimizes the smallest residual sum of squares, although an unusual value of

237l may make the model difficult to interpret. Some authors may suggest that only

238values of l of �0.5, 0, 0.5, and 1.0 be considered to ease in the model building

239process.10

240Many time series, involving quarterly or monthly data, may be characterized by

241rather large seasonal components. The ARIMA model may be supplemented with

242seasonal autoregressive and moving average terms:

ð1� f1B� f2B
2 � . . .� fpB

pÞð1�f1;sB
s � . . .� fp;sB

pSsÞð1� BÞd

ð1� BsÞdsXt

¼ ð1� y1B� . . .� yqBqÞð1� y1;sBs � . . .� yq;sBq;sÞat or ypðBÞFpðBsÞ
�Vd �VD

x Zt

¼ yqðBÞyQðBsÞat:

(3.11)

243One recognizes seasonal components by an examination of the autocorrelation

244and PAC function estimates. That is, the autocorrelation and PAC function

245estimates should have significantly large values at lags 1 and 12 as well as smaller

246(but statistically significant) values at lag 13 for monthly data.11 One seasonally

247differences the data (a 12th-order seasonal difference for monthly data and

248estimates the seasonal AR or MA parameters). An RWD model with a monthly

249component may be written as

�V �V12Zt ¼ ð1� BÞð1� yB12Þat: (3.12)

250The multiplicative form of the (0,1,1) � (0,1,1)12 model has a moving average

251operator that may be written as

9G.M. Jenkins, “Practical Experience with Modeling and Forecasting Time Series,” Forecasting
(Amsterdam: North-Holland Publishing Company, 1979).
10 Jenkins, op. cit., pp. 135–138.
11 Box and Jenkins, Time Series Analysis, pp. 305–308.
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ð1� yBÞð1� yB12Þ ¼ 1� yB� yB12 þ yB13:

252 The RWD with the monthly seasonal adjustments is the basis of the “airline

253 model” in honor of the analysis by Professors Box and Jenkins of total airline

254 passengers during the 1949–1960 period.12 The airline passenger data analysis

255 employed the natural logarithmic transformation.

256 There are several tests and procedures that are available for checking the

257 adequacy of fitted time series models. The most widely used test is the Box–Pierce

258 test, where one examines the autocorrelation among residuals, at:

n̂k ¼
t ¼ Pn

kþ1

atat�k

Pn
t¼1

a2t

; k ¼ 1; 2; . . . :

259 The test statistic, Q, should be X2 distributed with (m–p–q) degrees of freedom:

Q ¼ n
Xm
k¼1

n̂2k :

260 The Ljung–Box statistic is a variation on the Box–Pierce statistic and the

261 Ljung–Box Q statistic tends to produce significance levels closer to the asymptotic

262 levels than the Box–Pierce statistic for first-order moving average processes. The

263 Ljung–Box statistic, the model adequacy check reported in the SAS system, can be

264 written as

Q ¼ nðnþ 2Þ
Xm
k¼1

ðn ¼ kÞ�1v̂2k : (3.13)

265 Residual plots are generally useful in examining model adequacy; such plots

266 may identify outliers as we noted in the chapter. The normalized cumulative

267 periodogram of residuals should be examined.

268 Granger and Newbold (1977) and McCracken (2002) use several criteria to

269 evaluate the effectiveness of the forecasts with respect to the forecast errors.

270 In this chapter, we use the root mean square error (RMSE) criteria. One seeks to

271 minimize the square root of the sum of the absolute value of the forecast errors

272 squared. That is, we calculate the absolute value of the forecast error, square the

273 error, sum the squared errors, divided by the number of forecast periods, and

274 take the square root of the resulting calculation. Intuitively, one seeks to minimize

275 the forecast errors. The absolute value of the forecast errors is important because if

12 Box and Jenkins, op. cit.
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276one calculated only a mean error, a 5% positive error could “cancel out” a 5%

277negative error. Thus, we minimize the out-of-sample forecast errors. We need a

278benchmark for forecast error evaluation. An accepted benchmark (Mincer and

279Zarnowitz 1969) for forecast evaluation is a NoCH. A forecasting model should

280produce a lower RMSE than the NoCH model. If several models are tested, the

281lowest RMSE model is preferred.

282In the world of business and statistics, one often speaks of autoregressive,

283moving average, and RWD models, or processes, as we have just introduced.

284It is well known that the majority of economic series, including real Gross

285National Product (GDP) in the United States, follow an RWD, and are AU5represented

286with ARIMA model with a first-order moving average operator applied to the first-

287difference of the data. The data is differenced to produce stationary, where a

288process has a (finite) mean and variance that do not change over time and the

289covariance between data points of two series depends upon the distance between the

290data points, not on the time itself. The RWD process, estimated with an ARIMA

291(0,1,1) model, is approximately equal to a first-order exponential smoothing model

292(Cogger 1974). The RWD model has been supported by the work of Nelson and

293Plosser (1982).

294In a transfer function model, one models the dynamic relationship between the

295deviations of input X and output Y. One is concerned with estimating the delay

296between the input and output. The set of weights is often referred to as the impulse

297response function:

Yt ¼ V0
~Xt þ V1

~Xt�1 þ V2
~Xt�2: (3.14)

¼ VðBÞ ~Xt: (3.15)

298Modeling Real GDP: An Example

299GDP is the market value of all goods and services produced within a country in a

300given period. The expenditure approach holds that GDP is the sum of personal

301consumption, gross investment, government spending, and net exports (exports less

302imports). Let us go to a source of real-business economic and financial data. The St.

303Louis Federal Reserve Bank has an economic database, denoted FRED, containing

304some 41,000 economic series, available at no cost, via the Internet, at http://

305research.stlouisfed.org/fred2.

306If one downloaded and graphed quarterly real (in 2005 dollars) GDP data from

3071947 to 2011Q1 (April 1, 2011), one sees in Chart 1 that the postwar period has

308been one of great, fairly consistent growth.
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309 The recession of 2007–2008 is pronounced and notable, the most obvious

310 contraction of the postwar period.

311 Let us examine the autocorrelation (AC) and PAC functions of the quarterly

312 data. The raw data AC and PAC function estimates, estimated in EViews, are

313 shown in Table 3.1, and indicate the need to (first) difference the data. One can

314 apply the Box–Jenkins time series methodology to the real GDP data and estimate

315 several basic models. We can take the difference of the logarithm of the series to

316 produce stationarity and estimate a first-order autoregressive parameter to approxi-

317 mate the data (Table 3.2) AU6.

318 We estimate an RWD model, an ARIMA (0,1,1), in Table 3.3 for the US real

319 GDP, 1947–2011Q1. The drift term, a first-order moving average term with a 0.289

320 coefficient, is statistically significant, having a t-statistic of 4.89. The overall F-
321 statistic of 31.12 indicates that the model is adequate fit. The RWD model is an

322 adequate representation of the real GDP data generating process. One can, and

323 should, fit other ARIMA models.13

324 The author fits an ARIMA (1,1,0) model as an additional ARIMA benchmark

325 at the suggestion of Professor Victor Zarnowitz.14 The ARIMA (1,1,0) has a higher

326 F-statistics than the ARIMA (1,1,0) and a higher t-statistic on the first-order

327 autoregressive parameter, 6.50. The author used the ARIMA (1,1,0) benchmark is

13 The EViews software, EViews4, in this chapter is an extremely easy system to use. The author

first worked with Box–Jenkins time series model using the Nelson (1973) and Jenkins (1979)

monographs and the ARIMA programs of David Pack (1982).
14 Victor Zarnowitz was formerly emeritus of the University of Chicago, Senior Economist at

TCB, and a long-term fellow Associate Editor of the author at The International Journal of
Forecasting.
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328a study of the effectiveness of TCB AU7LEI (Guerard 2001). Both ARIMA models are

329adequately fit (Table 3.4).

330If one chose not to difference the real GDP data and fit a first-order

331autoregressive model, one finds an AR(1) parameter near 1, see Table 3.5.

332The initial view of the adjusted R-square and F-statistic might lead the reader to

333believe that the AR(1) model was almost “truth.” One must model changes in

334financial economic data.

335Leading Economic Indicators and Real GDP Analysis:

336The Statistical Evidence, 1970–2002

337We introduce the time series modeling process in this study because we will use

338TCB US composite LEI as an input to a transfer function model of US real GDP,

339both series being first-differenced and log-transformed. The authors test the null

340hypothesis that there is no statistical association between changes in the logged LEI

t1:1Table 3.1 Autocorrelation and partial autocorrelation function estimates of Real GDP,

1947–2011Q1

Autocorrelation Partial correlation AC PAC Q-Stat Prob t1:2

.|******** .|******** 1 0.990 0.990 256.60 0.000 t1:3

.|******** .|.      | 2 0.979 �0.013 508.73 0.000 t1:4

.|*******| .|.      | 3 0.968 �0.013 756.34 0.000 t1:5

.|*******| .|.      | 4 0.958 �0.012 999.38 0.000 t1:6

.|*******| .|.      | 5 0.947 �0.005 1237.9 0.000 t1:7

.|*******| .|.      | 6 0.936 �0.002 1471.9 0.000 t1:8

.|*******| .|.      | 7 0.925 �0.001 1701.6 0.000 t1:9

.|*******| .|.      | 8 0.915 �0.001 1926.9 0.000 t1:10

.|*******| .|.      | 9 0.904 �0.003 2148.0 0.000 t1:11

.|*******| .|.      | 10 0.894 �0.010 2364.8 0.000 t1:12

.|*******| .|.      | 11 0.883 �0.015 2577.3 0.000 t1:13

.|*******| .|.      | 12 0.871 �0.036 2785.1 0.000 t1:14

.|*******| .|.      | 13 0.859 �0.037 2988.0 0.000 t1:15

.|*******| .|.      | 14 0.847 �0.021 3186.0 0.000 t1:16

.|****** | .|.      | 15 0.835 �0.004 3379.0 0.000 t1:17

.|****** | .|.      | 16 0.822 �0.017 3567.0 0.000 t1:18

.|****** | .|.      | 17 0.810 �0.008 3750.1 0.000 t1:19

.|****** | .|.      | 18 0.797 �0.004 3928.2 0.000 t1:20

.|****** | .|.      | 19 0.785 �0.001 4101.6 0.000 t1:21

.|****** | .|.      | 20 0.772 �0.014 4270.2 0.000 t1:22

.|****** | .|.      | 21 0.760 �0.006 4434.1 0.000 t1:23

.|****** | .|.      | 22 0.747 �0.014 4593.2 0.000 t1:24

.|****** | .|.      | 23 0.734 �0.008 4747.6 0.000 t1:25

.|****** | .|.      | 24 0.722 0.007 4897.5 0.000 t1:26
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341 and changes in logged real GDP in the United States. A positive and statistically

342 significant coefficient indicates that the leading indicator composite series is

343 associated with rising real output, and leads to the rejection of the null hypothesis.

344 Zarnowitz (1992) examined the determinants of Real GDP, 1953–1982, using

345 VAR models. In this analysis, we test the statistical significance of TCB LEI by

346 adding the lags of the variable to an AR(1) model. Does the knowledge of the LEI

t2:1 Table 3.2 Autocorrelation and partial autocorrelation function estimates of differenced Real

GDP, 1947–2011Q1

Autocorrelation Partial correlation Lag AC PAC Q-Stat Probt2:2

.|****   | .|****   | 1 0.474 0.474 58.536 0.000t2:3

.|***   | .|*   | 2 0.346 0.157 89.953 0.000t2:4

.|*   | *|.      | 3 0.151 �0.082 95.941 0.000t2:5

.|*   | .|.      | 4 0.106 0.023 98.922 0.000t2:6

.|.      | *|.      | 5 �0.016 �0.089 98.987 0.000t2:7

.|.      | .|.      | 6 0.022 0.056 99.111 0.000t2:8

.|.      | .|.      | 7 0.006 0.017 99.122 0.000t2:9

.|.      | .|.      | 8 �0.008 �0.039 99.141 0.000t2:10

.|*   | .|*   | 9 0.126 0.192 103.44 0.000t2:11

.|*   | .|.      | 10 0.104 �0.011 106.39 0.000t2:12

.|.      | *|.      | 11 0.044 �0.09 106.92 0.000t2:13

*|.      | *|.      | 12 �0.059 �0.1 107.88 0.000t2:14

.|.      | .|.      | 13 �0.005 0.062 107.88 0.000t2:15

.|.      | .|*   | 14 �0.001 0.07 107.88 0.000t2:16

.|.      | .|.      | 15 �0.005 �0.038 107.89 0.000t2:17

.|*   | .|*   | 16 0.075 0.103 109.43 0.000t2:18

.|.      | .|.      | 17 0.038 �0.033 109.82 0.000t2:19

.|.      | .|.      | 18 0.058 0.001 110.76 0.000t2:20

.|*   | .|*   | 19 0.096 0.071 113.34 0.000t2:21

.|*   | .|.      | 20 0.092 �0.013 115.73 0.000t2:22

.|.      | .|.      | 21 0.024 0.005 115.89 0.000t2:23

.|.      | .|.      | 22 0.053 0.051 116.7 0.000t2:24

.|.      | .|.      | 23 0.06 0.013 117.74 0.000t2:25

.|*   | .|*   | 24 0.126 0.12 122.29 0.000t2:26
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347help forecast future changes in GDP, and can past values of the GDP data predict

348the future growth of GDP? In a recent study of univariate and time series model

349post-sample forecasting, Thomakos and Guerard (2001) compared RWD and

350transfer-function models with NoCH forecasts using rolling one-period-ahead

351post-sample periods. Guerard (2001) found that the AR(1) and RWD processes

352are adequate representations of the time series process of real GDP, given the lags

353of the autocorrelation and PAC functions. Guerard (2001) reported the estimated

354cross-correlation functions between the G7 respective LEI and real GDP for the

t3:1Table 3.3 An ARIMA RWD estimate of Real Gross Domestic Product, 1947–2011Q1

Dependent variable: DLOG(RGDP) t3:2

Method: Least squares t3:3

Date: 02/12/12, Time: 07:34 t3:4

Sample(adjusted): 2 259 t3:5

Included observations: 258 after adjusting endpoints t3:6

Convergence achieved after 12 iterations t3:7

Backcast: 1 t3:8

Variable Coefficient Std. error t-Statistic Prob. t3:9

C 0.007817 0.000756 10.33377 0.0000 t3:10

MA(1) 0.289085 0.059828 4.831927 0.0000 t3:11

R-Squared 0.108390 Mean dependent var 0.007825 t3:12

Adjusted R-squared 0.104907 S.D. dependent var 0.009970 t3:13

S.E. of regression 0.009432 Akaike info criterion �6.481599 t3:14

Sum squared resid 0.022777 Schwarz criterion �6.454057 t3:15

Log likelihood 838.1263 F-Statistic 31.12102 t3:16

Durbin–Watson stat 1.866243 Prob (F-statistic) 0.000000 t3:17

t4:1Table 3.4 An ARIMA estimate of Real Gross Domestic Product, 1947–2011Q1

Dependent variable: DLOG(RGDP) t4:2

Method: Least squares t4:3

Date: 01/23/12, Time: 14:52 t4:4

Sample(adjusted): 3 259 t4:5

Included observations: 257 after adjusting endpoints t4:6

Convergence achieved after 3 iterations t4:7

Variable Coefficient Std. error t-Statistic Prob. t4:8

C 0.007875 0.000926 8.506078 0.0000 t4:9

AR(1) 0.376487 0.057913 6.500889 0.0000 t4:10

R-Squared 0.142170 Mean dependent var 0.007861 t4:11

Adjusted R-squared 0.138806 S.D. dependent var 0.009972 t4:12

S.E. of regression 0.009254 Akaike info criterion �6.519720 t4:13

Sum squared resid 0.021838 Schwarz criterion �6.492100 t4:14

Log likelihood 839.7840 F-statistic 42.26155 t4:15

Durbin–Watson stat 2.067711 Prob (F-statistic) 0.000000 t4:16
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355 1970–2000 period, and found that the resulting transfer function models were

356 statistically significant in forecasting real GDP in the G7 nations.

357 In this chapter, the authors report the estimated autocorrelation and PAC

358 functions of the US real GDP, 1963–March 2002, shown in Table 3.1. EViews is

359 used in the analysis. Let us look at Table 3.6, the estimated autocorrelation PAC

360 functions of real quarterly US GDP, March 1963–March 2002. The estimated

361 autocorrelation function decays gradually, falling from 0.979 for a one period

362 (quarter lag), 0.958 for a two quarter lag, to 0.584 for a 20 quarter lag, and 0.318

363 for a 36 quarter lag. The estimated PAC function is characterized by the “spike” at a

364 one quarter lag. The first estimated partial autocorrelation is 0.979, and the second

365 partial autocorrelation is �0.005. The US real GDP series can be estimated as an

366 RWD series for the 1963–2002 period. The estimated functions substantiate the

367 estimation of the first-order moving average operator of the first-differenced, log-

368 transformed US real GDP series, denoted RWD, shown in Table 3.7. Guerard

369 (2001) used an autoregressive variation of the RWD model as a forecasting

370 benchmark. The residuals of the RWD model show few deviations from normality.

371 The RWD is a statistically adequately fitted model. We estimate the cross-

372 correlation function of the LEI and real GDP for an initial 32 quarter estimation

373 period, following Thomakos and Guerard (2004), and use the 1978–March 2002

374 period for initial US post-sample evaluation. Similar estimations are derived for

375 real GDP series in France (FR), Germany (GY), and the UK (see Table 3.8).

376 The LEI are statistically significantly associated with real GDP in the AU8respective

377 countries during the 1978–2002 period, as are shown in the respective GDP

378 regressions in Table 3.8. The lag structures of the models were discussed in Guerard

379 (2001), and we refer the reader to the initial modeling and forecasting analysis.

380 The statistical significance of the transfer functions in Table 3.3 leads one to reject

t5:1 Table 3.5 An AR(1) estimate of Real Gross Domestic Product, 1947–2011Q1

Dependent variable: RGDPt5:2

Method: Least squarest5:3

Date: 01/23/12, Time: 08:40t5:4

Sample(adjusted): 200 259t5:5

Included observations: 60 after adjusting endpointst5:6

Convergence achieved after 5 iterationst5:7

Variable Coefficient Std. error t-Statistic Prob.t5:8

C 14,253.05 885.7279 16.09191 0.0000t5:9

AR(1) 0.972952 0.009076 107.1982 0.0000t5:10

R-Squared 0.994978 Mean dependent var 11,944.42t5:11

Adjusted R-squared 0.994892 S.D. dependent var 1137.426t5:12

S.E. of regression 81.29588 Akaike info criterion 11.66683t5:13

Sum squared resid 383,323.1 Schwarz criterion 11.73664t5:14

Log likelihood �348.0050 F-Statistic 11,491.46t5:15

Durbin–Watson stat 1.033644 Prob (F-statistic) 0.000000t5:16
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t6:1Table 3.6 Correlogram of USGDP

t6:2
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381 the null hypothesis of no statistical association changes in the LEI and changes in

382 real GDP. The statistically significant lags in the cross-correlation functions show

383 how past values of the LEI series are associated with the current values of the

384 respective real GDP. That is, the LEI series lead their respective real GDP series

385 and can be used as inputs to transfer function models of real GDP. The multiple

386 regressions of the post-sample period are generally statistically significant at the 1%

387 level, as shown by their respective F-statistics of the regressions. The exception to

388 this result is the French real GDP estimate, see Table 3.8, that is significant at

389 approximately the 5% level. Thus, the estimation of the transfer function is statisti-

390 cally significant relative to simply using an AR(1) time series model.

t8:1 Table 3.8 Post-sample regression coefficients of the leading economic indicators, 1978–March

2002

Country Const.

LEI

(�1)

LEI

(�2)

LEI

(�3)

LEI

(�4) AR(1)

Adjusted

R-squared F-Statistict8:2

USA (t) 0.005 0.337 0.060 0.141 0.053 0.283 10.400t8:3

7.200 4.800 0.890 2.130 0.480t8:4

UK 0.005 0.214 �0.166 0.088 5.600t8:5

7.500 2.610 �2.300t8:6

Germany 0.004 0.242 0.211 �0.250 0.102 4.610t8:7

5.750 2.610 2.370 �2.300t8:8

France 0.004 0.140 0.133 �0.064 0.038 0.058 2.470t8:9

7.960 1.930 1.870 �0.910 0.360t8:10

Japan 0.005 0.217 �0.437 0.174 11.030t8:11

5.860 2.900 �4.660t8:12

Canada 0.008 0.306 0.036 �0.263 0.150 0.240 3.290t8:13

4.880 2.340 0.270 �2.100 0.640t8:14

Italy 0.004 0.132 �0.089 �0.009 �0.050 0.059 1.460t8:15

4.670 2.260 �1.480 �1.490 �0.240t8:16

t7:1 Table 3.7 Random walk with drift time series model of Real US GDP

Dependent variable: DLUSGDPt7:2

Variable Coefficient Std. error t-Statistic Prob.t7:3

C 0.008 0.0001 8.149 0.000t7:4

MA(1) 0.218 0.087 2.507 0.013t7:5

R-Squared 0.061t7:6

Adjusted R-squared 0.053t7:7

S.E. of regression 0.0086 Akaike info criterion �6.6575t7:8

Sum squared resid 0.0093 Schwarz criterion �6.6129t7:9

Log likelihood 428.08 F-statistic 8.1570t7:10

Durbin–Watson stat 1.92 Prob(F-statistic) 0.0050t7:11
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391US and G7 Post-sample Real GDP Forecasting Analysis

392In this section, the author estimates several time series models for the US leading

393indicators and Real GDP, and corresponding models for the G7 nations. A simple

394autoregressive variation on the random walk model, an ARIMA (1,1,0), is

395estimated to serve as a naı̈ve, forecasting model. The ARIMA model is referred

396to as the RWD Model. The transfer function model uses the LEI series as the input

397to the Real GDP (output) series. We will evaluate the forecasting performances of

398the models with respect to their RMSE, defined as the square root of the sum of the

399individual observation forecast errors squared. The most accurate forecast will have

400the smallest forecast error squared and hence the smallest RMSE. The RMSE

401criteria are proportional to the average squared error criteria used in Granger and

402Newbold (1977). One can estimate models using 32 quarters of data and forecast

403one-step-ahead. We compare the forecasting accuracy of four models of the US real

404GDP. The models tested are (1) the transfer function model in which TCB compos-

405ite index of lLEI is lagged three quarters, denoted TF; (2) a NoCH forecast; (3) the

406simple RWD model; and (4) a simple transfer function model in which TCB

407composite index of LEI is lagged one period, denoted TF1. One finds that the

408three-quarter of lagged LEI transfer function is the most accurate out-of-sample

409forecasting model for the US real GDP, although there is no statistically significant

410differences in the rolling one-period-ahead root mean square forecasting errors of

411the RWD, TF, and TF1 models.

412The one-period-ahead quarterly RMSE for the 1978–March 2002 period of Real

413GDP are shown in Table AU93.9.

414Thus, the US leading indicators lead Real GDP, as one should expect, and the

415transfer function model produces lower forecast errors than the univariate model,

416and a naive benchmark, the NoCH model. The reader notes that the transfer

417function model uses a one-quarter lag that produces forecasts that are not statisti-

418cally different from the three-quarter lags suggested from the estimated cross-

419correlation function.

420The model forecast errors are not statistically different (the t-value of the paired
421differences of the univariate and TF models is 0.91). An analysis of the rolling one-

422period-ahead RMSE produces somewhat different results for post-sample modeling

423than the use of one long period of post-sample period. The multiple regression

424models indicate statistical significance in the US composite index of LEI for the

4251978–March 2002 period. One does not find that the transfer function model

426forecast errors are (statistically) significantly lower than univariate ARIMA

427model (RWD) errors in a rolling one-period-ahead analysis. The authors prefer to

428measure forecasting performance in the rolling period manner (as we often live in a

429one-period-ahead forecasting regime).

430The RMSE of the G7 nations cast doubt as to the effectiveness of the LEI as a

431statistically significant input in transfer function models forecasting real GDP.

432Transfer function model forecasts of real GDP, using TCB do not significantly
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433 reduce RMSE relative to the RWD model forecasts during the 1978–March 2002

434 period. Please see Table 3.10.

435 One may ask why 32 observations were used. Why not use 60 observations of

436 past real GDP to estimate the models? If one sought to minimize the forecasting

437 error from 1982 to June 2002, and one varied the estimation modeling periods, one

438 finds that the 32-quarter estimation is quite reasonable, see Table 3.11. The 40- and

439 44-quarter estimation periods produce the lowest real RMSE, although the

440 differences are not statistically significant.

Table 3.9 Post-sample

accuracy of the US Real GDP

models using The Conference

Board LEI in the transfer

function model

Model RMSEt9:1

No-change 0.0117t9:2

RWD 0.0086t9:3

TF1 0.0080t9:4

TF 0.0079t9:5

Table 3.10 Post-sample

accuracy of Real GDP models

using TCB LEIs in the

transfer function model

Nation Model Input source RMSEt10:1

GR NoCH 0.0114t10:2

RWD 0.0109t10:3

TF TCB 0.0106t10:4

FR NoCH 0.0081t10:5

RWD 0.0065t10:6

TF TCB 0.0070t10:7

JP NoCH 0.0177t10:8

RWD 0.0152t10:9

TF TCB 0.0163t10:10

UK NoCH 0.0106t10:11

RWD 0.0090t10:12

TF TCB 0.0089t10:13

Table 3.11 Post-sample root

mean square errors of real US

GDP, 1982–2002

Estimation modeling periods RMSEt11:1

32 5.31t11:2

36 5.18t11:3

40 5.19t11:4

44 4.99t11:5

48 4.99t11:6

52 5.03t11:7

56 5.05t11:8

60 5.08t11:9

NoCh 8.09t11:10
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441Summary

442This chapter examined the predictive information in TCB LEI for the United States,

443the UK, Japan, and France. We find that TCB LEI and FIBER short-term LEI are

444statistically significant in modeling the respective real GDP changes during the

4451970–2000 period. One rejects the null hypothesis of no association between

446changes in LEI and changes in real GDP in the United States, and the G7 nations.

447If one uses a rolling 32-quarter estimation period and a one-period-ahead

448forecasting RMSE calculation, the LEI forecasting errors are not significantly

449lower than the univariate ARIMA model forecasts. In Chap. 6, we estimate addi-

450tional time series models and introduce the reader to causality testing.
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1Chapter 4

2Regression Analysis and Multicollinearity:

3Two Case Studies

4In this chapter, we explore two applications of regression modeling: the question of

5regression-weighting of GNP forecasts and the issue of estimating models

6associated with security totals returns. We examine the forecasting of GNP by

7major econometric firms and the modeling of security returns as a function of well-

8known investment variables and strategies. We illustrate regression analysis and

9problems with highly correlated independent variables. We will refer to the corre-

10lation among independent variables as multicollinearity.

11The first case study involves combining econometric services’ forecasts of GNP.

12In combining economic forecasts a problem often faced is that the individual

13forecasts display some degree of dependence. We discuss latent root regression

14(LRR) for combining collinear GNP forecasts. Guerard and Clemen (1989) results

15indicate that LRR produces more efficient combining weight estimates (regression

16parameter estimates) than ordinary least squares estimation (OLS), although out-of-

17sample forecasting performance is comparable to OLS. Researchers appear to

18have reached agreement, or consensus, regarding the value of combining forecasts.

19Performance, measured in terms of a variety of error summary statistics, can be

20improved by combining multiple forecasts. There is an extensive literature on

21combining forecasts that can be traced back to Bates and Granger (1969), reached a

22peak withWinkler andMakridakis (1983), Clemen andWinkler (1986), and Granger

23(1989), and was documented in a bibliography by Clemen (1989). An important

24unanswered question, however, regards what combination procedure to use.

25There are many ways of determining these weights, and the aim was to choose a

26method which was likely to yield low errors for the combined forecasts. Bates and

27Granger, denoted as BG in many Granger references, (1969) assumed that

28the performance of the individual forecasts would be consistent over time in the

29sense that the variance of errors for the two forecasts could be denoted by s1
2 and

30s2
2 for all values of time, t. It was further assumed that both forecasts would be

31unbiased (either naturally or after a correction had been applied). The combined

32forecast would be obtained by a linear combination of the two sets of forecasts,
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33 giving a weight k to the first set of forecasts and a weight (1 � k) to the second set,
34 thus making the combined forecast unbiased. The variance of errors in the com-

35 bined forecast, s2c , can then be written:

s2c ¼ k2s21 þ ð1� kÞ2s22 þ 2rk s1ð1� kÞs2; (4.1)

36 where k is the proportionate weight given to the first set of forecasts and r is the

37 correlation coefficient between the errors in the first set of forecasts and those in the

38 second set. The choice of k should be made so that errors of the combined forecasts

39 are small: more specifically, we chose to minimize the overall variance, s2c .
40 Differentiating with respect to k, and equating to zero, we get the minimum of

41 s2c , occurring when

k ¼ s22 � rs1s2
s21 � s22 � 2rs1s2

: (4.2)

42 In the case where r ¼ 0, this reduces to

k ¼ s22 s21 þ s22
� ��

: (4.3)

43 It can be shown that if k is determined by (4.1), the value of s2c is no greater than
44 the smaller of the two individual variances.1

45 The optimum value for k is not known at the commencement of combining

46 forecasts. The value given to the weight k would change as evidence was

47 accumulated about the relative performance of the two original forecasts. Thus

48 the combined forecast for time period T, CT, is more correctly written as

CT ¼ kTf1;T þ ð1� kTÞf2;T ; (4.4)

49 where f1,T is the forecast at time T from the first set and f2,T is the forecast at time T
50 from the second set.

51 Thought should be given to the possibility that the performance of one of the

52 forecasts might be changing over time (perhaps improving) and that a method based

53 on an estimate of the error variance since the beginning of the forecast might not

54 therefore be appropriate.

55 Granger (1989) defined good forecasting methods (defined by us as those which

56 yield low mean-square forecast error) are likely to possess properties such as:

57 (a) The average weight k should approach the optimum value, defined by (2), as the

58 number of forecasts increased—provided that the performance of the forecasts

59 is stationary.

1 The reader will see a variation of (4.1) and (4.2) in Chap. 5 when we discuss optimal security

weights in a portfolio. The Bates and Granger optimal forecast weighting is a variation of the

optimal Markowitz (1959) two-asset security calculation.
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60(b) The weights should adapt quickly to new values if there is a lasting change in

61the success of one of the forecasts.

62(c) The weights should vary marginally from the optimum value.

63This last point is included since property (a) is not sufficient on its own.2

64In addition to these properties, there has been an attempt to restrict methods to

65those which are moderately simple, in order that they can be of use to businessmen.

66Model building can be tested in combining forecasts. If we had available all the

67information, the so-called perfect foresight answer, upon which all the forecasts

68are based, then we would build the complete model. There would be no need for

69out-of-sample or post-sample forecasting periods. In most cases, only the individual

70forecasts are available, rather than the information they are based on, and so

71combining is appropriate. In the BG combinations these data were not used

72efficiently. For example, if fn,1, gn,1 are a pair of one-step forecasts of yn+1, made

73at time n, and if the yt series as stationary, then the unconditional mean

mn ¼ 1

n

Xn
j¼1

yt�j (4.5)

74is also a forecast of yn+1 available at time n, although usually a very inefficient one.
75This new forecast can be included in the combination, giving

cnþ1 ¼ a1mn þ a2fn;1 þ a3gn;1 (4.6)

76as the combined forecast. The weights aj can be obtained by regressing cn,1 on yn+1
77as discussed in Granger and Ramanathan (1984). Whether the weights aj should add
78to one depends on whether the forecasts are unbiased and the combination is

79required to be unbiased. Before combining, it is usually a good idea to unbias the

80component forecasts. Thus, if ww,1 is a set of one-step forecasts, run a regression

ynþ1 ¼ aþ bwn;1 þ enþ1 (4.7)

81and check whether a ¼ 0, b ¼ 1, and if en is white noise. If any of these conditions
82do not hold, an immediately apparently superior forecast can be achieved and these

83should be used in any combination.

84In all these extensions of the original combining technique, combinations have

85been linear, only single-step horizons are considered, and the data available

86have been assumed to be just the various forecasts and the past data of the series

87being forecast. On this last point, it is clear that other data can be introduced to

88produce further forecasts to add to the combinations, or Bayesian techniques could

2Granger (1989) additionally pointed out that if the optimum value for k is 0.3, one may still obtain

poor combined forecast if k takes two values only, being 0 on 60% of occasions and 1.0 on the

remaining 40%.
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89 be used to help determine the weights. The fact that only linear combinations were

90 being used was viewed as an unnecessary restriction from the earliest days, but

91 sensible ways to remove this estimation were unclear.

92 Procedures suggested by Bates and Granger (1969), with subsequent extensions

93 and applications by Newbold and Granger (1974) and Winkler (1981) among

94 others, model the forecast errors with a multinormal process, the parameters of

95 which determine the combining weights. A number of alternative combining

96 procedures have also been proposed, including simple averages (Makridakis and

97 Winkler 1983), unrestricted regressions (Granger and Ramanathan 1984),

98 weighting procedures based on assessments of which forecast might perform best

99 (Bunn 1975; Clemen and Guerard 1989), and various ad hoc procedures (Ashton

100 and Ashton 1985). The basic question is whether equally weighted composite

101 forecasting models outperform statistically based forecast models.

102 In developing composite models using the multinormal model or related regres-

103 sion approaches one major problem is that the covariance matrix must typically be

104 estimated with relatively small quantities of data. This results in unstable estimation

105 of the covariance matrix and even more unstable estimation of the combining

106 weights (Kang 1986). Furthermore, for economic forecasting the problem is

107 exacerbated by the fact that different forecaster errors are typically highly

108 correlated; correlations above 0.8 are not at all unusual (Clemen and Winkler

109 1986; Figlewski and Urich 1983).

110 We explore the possibility of using LRR (Webster et al. 1974; Gunst et al. 1976)
111 as a procedure for combining dependent forecasts. This approach provides an

112 explicit framework for analysis of collinear data through the mathematics of latent

113 roots and vectors. The data we analyze (GNP forecasts studied in Clemen and

114 Winkler 1986) display pairwise correlations of forecast errors between 0.82

115 and 0.96. Given these relatively high correlations as well as Kang’s demonstration

116 of the instability of the estimated weights in this data set, it seems reasonable to

117 think that LRR might improve on the performance of OLS.

118 We assume that at time t – 1 we have access to k forecasts, ft ¼ (flt, . . ., fkt),
119 for yt. We can write yt stochastically in terms of the (possibly biased) forecasts fit,:

yt ¼ ai þ bi fit þ uit; (4.8)

120 where each ut ¼ (ult, . . ., ukt)
0 is an independent realization from a normal process

121 with mean vector (0, . . ., 0)0 and covariance matrix
P

. At time t – 1, we have

122 available past observations (forecasts and actual values) for time t ¼ 1, . . ., t – 1.

123 To represent these data we will adopt the following notation:

½y;F� ¼
y1
�

yt�1

1

�
1

f1;1
�

f1;t�1

. . .

. . .

fk;1
�

fk;t�1

0
@

1
A: (4.9)

124 We include the vector of ones because, in general, we will be estimating

125 regression coefficients including a constant term.

78 4 Regression Analysis and Multicollinearity: Two Case Studies



126Multiply each of the different equations (4.9) by a factor gi such that
P

gi ¼ 1.

127Then combine equation (4.1) to obtain the following regression representation:

yt ¼
X

giai þ
X

gibifit þ
X

gimit

¼ b0 þ b1f1t þ . . . þ bkfkt þ et
¼ ft

�bþ et; (4.10)

128where

b ¼ ðb0; . . . ; bkÞ0 ¼
X

giai; g1b1; . . . ; gkbk
� �0

ft
�b ¼ ð1; f1t; . . . ; fktÞ

129and

et ¼
X

gimit:

130The distributional assumptions regarding mt imply that the regression equation

131error terms et obey standard OLS assumptions. Therefore, the OLS estimator of b is

132given by the familiar expression

b� ¼ ðF0FÞ�1F0y: (4.11)

133As usual, b* is the best linear unbiased estimator of b, and, assuming stationarity

134of the process through time, the forecast yt* ¼ ft*b* is the best linear unbiased

135predictor of yt.
136In the event of multicollinearity in the F matrix, b* (and hence yt*) can be

137inefficient. If the process is stationary, one solution to the problem of multicollinear

138regressors is simply to acquire more data to improve the efficiency of the estima-

139tion, thereby improving prediction performance. However, this is often not possi-

140ble, especially when working with economic data. Thus, there is some motivation to

141consider biased estimation and prediction if the biased approach might yield a

142substantial improvement in terms of estimation efficiency. LRR is one such tech-

143nique. The following is a brief description of the procedure, abstracted from

144Webster et al. (1974) and Gunst et al. (1976). We direct the interested reader to

145those papers for more details.

146LRR seeks to identify near-singularities in the explanatory variables and to

147determine their predictive value. The procedure uses this information to estimate

148the regression parameters b by adjusting for non-predictive near-singularities.

149Define the matrix A to be n � (k + 1) data matrix containing standardized-

150dependent and -independent variables. The correlation matrix (A0 A) has latent

151roots li and corresponding latent vectors ai defined by
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jA0A� li Ij ¼ 0

152 and

ðA0A� liIÞai ¼ 0:

153 Denote the elements of ai by

a0i ¼ ða0i; a1i; ; . . . ; akiÞ

154 and

a0
0

i ¼ ða1i; . . . ; akiÞ:

155 That is, a0i contains all of the elements of ai except tile first one. Also, define

�2 ¼ Sðyi � yÞ2:

156 The OLS estimator b* can be written as

b� ¼ ��Sciai0;

157 where

ci ¼ a0ili
�1 Sa20 lj

�� ��1
: (4.12)

158 Values of li and a0i close to zero indicate a non-predictive near-singularity.

159 As a0i becomes close to zero, ci should also be close to zero. However, since li is
160 also small, cimay be quite large, and may have a dominant effect in the estimate b*.
161 Gunst et al. (1976) suggest setting ci ¼ 0 for │lI│ � 0.3 and │a0i│ � 0.1, thus

162 obtaining the LRR estimate of the parameter b. Webster et al. (1974) and Gunst

163 et al. (1976) provide detailed geometrical interpretations and discussion of this

164 technique.

165 The First Example: Combining GNP Forecasts

166 Clemen and Winkler (1986) studied the forecasting efficiency of Gross National

167 Product (GN) forecasting services in the mid-1980s, using data from the fourth

168 quarterly of 1970 to the fourth quarter of 1983. Wharton Econometrics (Wharton),

169 Chase Econometrics (Chase), Data Resources, Inc. (DRI), and the Bureau of
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170Economic Analysis (BEA) made quarterly forecasts of many economic variables.

171Clemen and Winkler (1986) used level forecasts of nominal GNP (1970–1983),

172obtained directly from Wharton and BEA and from the Statistical Bulletin
173published by the Conference Board for Chase and DRI to construct growth rate

174forecasts (in percentage terms), and calculated the deviations from actual growth as

175determined from GNP reported in Business Conditions Digest. Forecasts with four

176different horizons (one, two, three, and four quarters) were analyzed. For example,

177the four-quarter GNP forecast predicts the percentage change for AU1the 3-month

178period four quarters in the future (counting the current one). Finally, the data are

179divided into two periods, one for estimation and one for forecast evaluation.

180The estimation period runs through 1979 for each horizon, with the remaining

181data kept in reserve as an independent sample for forecast evaluation. For analysis

182of the individual forecasts, the reader is referred to Clemen and Winkler (1986) and

183Clemen (1986).

184Clemen and Guerard (1989) tested LRR as a combining technique because of the

185high pairwise correlations among the individual forecasts and the instability of

186the estimated weights, noted by Kang (1986). However, while these observations

187suggest multicollinearity, we have no clear indication of the severity of the problem.

188Belsley et al. (1980) AU2and Belsley (1982, 1984) have discussed diagnostics for explicit

189measurement of the severity of multicollinearity. We calculated variance inflation

190factors, condition indexes, and variance-decomposition proportions for each of the

191four forecast horizons. These diagnostics are reported in Table 4.1. For condition

192numbers (defined as the largest of the condition indexes), the value 30 is suggested as

193a screen; situations with larger values are then examined more closely. All our

194condition numbers are between 20 and 30; thus, on the basis of this diagnostic alone

195our data do not appear to display severe multicollinearity. For variance inflation

196factors (VIFs), Montgomery and Peck (1982) suggest that values from 5 to 10

197indicate severe multicollinearity. Our VIFs range up to 4.6. Variance-decomposition

198proportions can also be used to detect multicollinearity, which is indicated by two

199numbers exceeding 0.5 in any one row of the variance-decomposition table. For our

200forecasts, the variance-decomposition calculations reveal collinearity between (1)

201the DRI and BEA forecasts in the one- and two-quarter horizons, (2) the Wharton

202and BEA forecasts in the three-quarter one, and (3) the Chase and DRI as well as the

203constant and BEA variables in the four-quarter horizon.3

204To some extent, the use of these diagnostics is problematic. For instance,

205condition indexes are based on eigenvalues (latent roots) of the sample covariance

206matrix, and it is unclear to what extent models built and estimated on the basis of

207this diagnostic might be sensitive for relatively small sample sizes. The presence

3 This research was supported in part by the National Science Foundation under Grant IST

8600788. We thank George Jaszi of the BEA and Donald Straszheim of Wharton, who graciously

provided the forecasts from their respective econometric models. The authors are indebted to

Professors S. Sharma and W.L. James for providing access to their LRR procedure as described in

Sharma and James (1981).
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208 of a condition index greater than 30 may be a reliable indicator of multicollinearity;

209 however, values slightly less than 30 do not necessarily mean that effects due to

210 multicollinearity will be unnoticeable. With regard to the variance-decomposition

211 proportions, the Guerard and Clemen (1989) results indicated that the one-quarter

212 DRI and BEA forecasts appear to be associated with an ill-conditioned covariance

213 matrix. That is, the correlation coefficient between the one-quarter DRI and BEA

214 (0.82, reported in Clemen andWinkler 1986) is the least of the pairwise correlations

215 for this horizon. Likewise, the correlation between Wharton and BEA errors in the

216 two-quarter analysis (0.94) is the second-lowest of the reported pairwise

217 correlations. Given these observations, it seems reasonable to conclude that

218 multicollinearity, perhaps at a relatively low level, was present in the Guerard

219 and Clemen (1989) data.

220 Application of LRR, using the Gunst et al. (1976) criteria for vector deletion,

221 produced the results shown in Table 4.2. Details regarding the latent roots and

222 vectors and the vector deletion patterns for each analysis are available from the

223 authors. The coefficient estimates for the Chase and DRI forecasts are highly

224 significant in the one-quarter horizon. In the two-quarter horizon, coefficient

225 estimates for DRI and BEA are significant, as is the DRI coefficient estimate in

226 the three-quarter horizon.

t1:1 Table 4.1 Multicollinearity diagnostics for GNP forecasts

Horizon Condition indexes

Variance-decomposition proportionst1:2

Constant Wharton Chase DRI BEAt1:3

1 9.78 0.68 0.00 0.03 0.02 0.07t1:4

15.80 0.04 0.01 0.00 0.56 0.63t1:5

17.65 0.01 0.03 0.73 0.30 0.30t1:6

20.93 0.27 0.96 0.24 0.11 0.00t1:7

VIF 3.38 3.86 3.25 3.24t1:8

2 11.06 0.55 0.25 0.14 0.00 0.01t1:9

12.58 0.17 0.60 0.13 0.01 0.13t1:10

14.06 0.16 0.11 0.62 0.01 0.23t1:11

27.41 0.11 0.04 0.11 0.98 0.63t1:12

VIF 1.85 2.25 4.60 3.23t1:13

3 10.94 0.71 0.00 0.26 0.01 0.00t1:14

13.69 0.23 0.42 0.44 0.01 0.01t1:15

18.98 0.06 0.50 0.27 0.09 0.53t1:16

22.24 0.00 0.08 0.03 0.88 0.46t1:17

VIF 2.54 2.40 3.93 3.27t1:18

4 7.36 0.05 0.84 0.01 0.00 0.00t1:19

11.14 0.29 0.06 0.29 0.09 0.01t1:20

16.39 0.01 0.03 0.62 0.84 0.00t1:21

22.86 0.65 0.06 0.07 0.07 0.98t1:22

VIF 1.52 2.31 2.54 2.22t1:23
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227For comparison, OLS results are also included in Table 4.2. Generally speaking,

228LRR and OLS produced coefficient estimates that are comparable in terms of signs

229and relative sizes. (While this comparison is a matter of degree, two exceptions are

230BEA in the one- and four-quarter horizons). On the other hand, LRR generally

231yielded more efficient estimates of the parameters than OLS, as measured by the

232t-statistics.
233The true test of a forecasting procedure is how well it performs outside of the

234fitting data. Table 4.3 presents the results obtained by using the estimated models to

235predict actual nominal GNP for the evaluation periods shown. Guerard and Clemen

236(1989) included the arithmetic average (equal weights) as one of the combining

237procedures for use as a benchmark. The performance measure we used, mean

238absolute relative error, is mean absolute percentage error (MAPE) divided by

239100. MAPE is a widely used forecast performance measure that allows performance

240comparisons among different forecast situations (see Armstrong 1985). The results

t2:1Table 4.2 LRR and OLS regression results

Horizon Constant Wharton Chase DRI BEA R2 t2:2

1 LRR 1.30 �0.23

(�0.58)

0.96

(2.83)a
0.37

(4.93)a

�0.11

(�1.78)

0.40 t2:3

OLS 2.18 �0.53

(�1.28)

0.65

(1.66)

0.33

(0.92)

0.48

(1.43)

0.46 t2:4

2 LRR 1.71 0.08

(0.24)

�0.25

(�0.69)

0.41

(2.52)a
0.63

(2.31)a
0.24 t2:5

OLS 1.48 0.06

(0.20)

�0.28

(�0.76)

0.59

(0.87)

0.52

(1.10)

0.24 t2:6

3 LRR 4.17 0.16

(0.39)

�0.62

(�1.60)

0.32

(2.56)a
0.76

(1.56)

0.18 t2:7

OLS 4.17 0.21

(0.46)

�0.59

(�1.53)

0.20

(0.34)

0.82

(1.47)

0.18 t2:8

4 LRR 8.69 �0.09

(�0.40)

�0.60

(�1.69)

0.96

(2.03)

�0.08

(�0.36)

0.12 t2:9

OLS 10.92 �0.06

(�0.28)

�0.47

(�1.10)

1.10

(2.39)a
�0.63

(�0.96)

0.17 t2:10

t2:11Values in parentheses are t-statistics
aSignificance at the 0.05 level

t3:1Table 4.3 Performance of combining methods for the post-estimation evaluation period shown

Horizon Evaluation period Equal weights OLS LRR t3:2

1 80.1–82.2 2.47 2.89 2.76 t3:3

2 80.1–82.3 3.60 4.19 4.40 t3:4

3 80.1–82.4 4.35 4.58 4.49 t3:5

4 80.1–83.1 4.45 3.67 3.71 t3:6

t3:7Performance is mean absolute relative error, where absolute relative error is defined as |(actual-

forecast)/actual|
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241 in Table 4.3 show that OLS and LLR performed comparably. Given the similar

242 estimates of the combining weights in the two analyses, this result is not surprising.

243 The equal weights combination outperformed the regression model in all but the

244 four-quarter horizon.

245 The Guerard and Clemen (1989) empirical results show that LRR produced more

246 efficient parameter estimates than OLS. However, the similar out-of-sample perfor-

247 mance of the two methods leads us to be somewhat ambivalent. In theory, LRR’s

248 more efficient estimation of parameters should result inmore efficient predictors and

249 hence better out-of-sample prediction performance. In light of the data’s high

250 correlations, Kang’s results, and Clemen’s and Winkler’s (1986) results from

251 combining these GNP forecasts using a Bayesian model, Guerard and Clemen

252 (1989) concluded that the comparable performance of LRR and OLS is troubling.

253 Compared to OLS, Clemen’s and Winkler’s Bayesian model resulted in forecasting

254 performance improvements of about 16% in terms of mean squared error. One

255 possible interpretation might be that Clemen’s and Winkler’s model, being mathe-

256 matically similar to ridge regression (Lindley and Smith 1972; Hocking 1976),

257 tended to counteract the dependence among the forecasts. Of course, other

258 techniques are available for use with collinear data, notably principal components

259 regression (Gunst et al. 1976) and LRR. The Guerard and Clemen (1989) motivation

260 for trying LRR was that it differs fundamentally from ridge regression (and the

261 related Clemen/Winkler model) in the waymulticollinearity is handled.Where ridge

262 regression depends on the estimation of a biasing parameter, principal components

263 regression and LRR are estimated by the elimination of non-predictive near-

264 singularities as described above. However, the Guerard and Clemen (1989) GNP

265 forecasts appeared to be collinear enough to cause some difficulty in the OLS

266 analysis, but not severe enough for LRR to dominate OLS.

267 The Second Example: Modeling the Returns of the US Equities

268 Our second examplewill address the estimations of the determinants of theUS equity

269 security monthly returns. In 1990, Harry Markowitz became the Head of the Global

270 Portfolio Research Department (GPRD) at Daiwa Securities Trust. His department

271 used fundamental data to create models for Japanese and the US securities and the

272 researchers tested single variable and regression-weighted composite model

273 strategies for Japan and the USA over 1974–1990. The GPRD analysis builds upon

274 Guerard and Takano (1991) and Guerard (1990) framework. We refer the reader to

275 those studies and the work of Savita Subramanian at Bank of America Merrill Lynch

276 for testing these variables, and many other strategies in the US equity market. The

277 quantitative work of Subramanian is some of the best “sell side” research, in the

278 opinion of the author.4 In this section, we review and revisit the GPRD regression

4 Savita Subramanian (2011), “US Quantitative Primer,” Bank of America Merrill Lynch, May.
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279analysis.5 AU3Guerard andTakano used book value, cash flow, and sales, relative to price,

280in their analysis. The major papers on combination of value ratios to predict stock

281returns that include at least CP and/or SP include Chan et al. (1991), Bloch et al.

282(1993), Lakonishok et al. (1994) AU4, and Haugen and Baker (2010). In fact, the Bloch

283et al. (1993) was a more technical version of Guerard and Takano (1991).

284The composite models could be created by combining variables using OLS,

285outlier-adjusted or robust regression (ROB), or weighted latent root regression

286(WLRR) modeling, in which outliers and the high correlations among the variables

287are used in the estimation procedure. The reader is referred to Bloch et al. (1993) for

288a discussion of ROB and WLRR techniques.6 The Markowitz group found AU5that the

289use of the more advanced statistical techniques produced higher relative out-of-

290sample portfolio geometric returns and Sharpe ratios. Statistical modeling is not just

291fun, but it is also consistent with maximizing portfolio returns. The quarterly

292estimated models outperformed the semiannual estimated models, although the

293underlying data was semiannual in Japan. The dependent variable in the composite

294model is total security quarterly returns and the independent variables are the EPR,

295BPR, CPR, and SPR variables. The ultimate test of OLS, ROB, and WLRR

296analyses can be found in the Bloch et al. (1993) simulations which reported higher

297Geometric Means, Sharpe Ratios, and F-Statistics using WLRR than OLS in

298estimating models of the determinants of monthly security returns. The Bloch

299et al. research (1993) has been reestimated, updated, and enhanced in Guerard

300(2006) AU5, Stone and Guerard (2010), AU6and Guerard et al. (2012).

301Let us discuss two enhancements in theGuerard et al. (2012) study: the addition of

302price momentum and earnings per share (eps) forecasts, revisions, and breadth

303variables. Earnings forecasting enhances returns relative to using only reported

304financial data and valuation ratios. In 1975, a database of eps forecasts was created

5 There are many approaches to security valuation and the creation of expected returns. The first

approaches to security analysis and stock selection involved the use of valuation techniques using

reported earnings and other financial data. Graham and Dodd (1934) recommended that stocks be

purchased on the basis of the price-earnings (P/E) ratio and Basu (1977) reported evidence

supporting the low P/E model. James (Jim) Miller, Chief Investment Officer, CIO, of Continental

Bank commissioned the project with Drexel, Burnham, Lambert, in 1989. Miller and Guerard

(1991) presented a stock selection model at The Berkeley Program in Finance that used earnings,

book value, cash flow, sales, relative variables, and earnings per share forecast revisions. Miller

and Guerard experimented with a price momentum variable, the Columbine Alpha, described in

Brush (2001). Jack Brush’s Columbine Alpha “pushed out” the eight-factor EP, BP, CP, SP, and

relative variables’ Efficient Frontier. Guerard delivered paper sat Columbine Equity Research

conferences in 1989 and 1994. See Guerard (1990).
6 Guerard (2006) reestimated the GPRD model using PACAP data at The Wharton School from

Wharton Research Data Services (WRDS). The WRDS/PACAP data is as close to the GPRD data

as was possible in academia. The average cross-sectional quarterly WLRR model F-statistic in the
GPRD analysis was 16 during the 1974–1990 period whereas the corresponding F-statistic
reported in the Guerard (2006) was 11 for the post-publication, 1993–2001 period. Both sets of

models were highly statistically significant and could be effectively used as stock selection

models.
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305 by Lynch, Jones, and Ryan, a NewYork brokerage firm, by collecting and publishing

306 the consensus statistics of 1-year-ahead and 2-year-ahead eps forecasts [Brown

307 (1999)]. The database evolved to become known as the Institutional Brokerage

308 Estimation Service (I/B/E/S) database. There is an extensive literature regarding

309 the effectiveness of analysts’ earnings forecasts, earnings revisions, earnings forecast

310 variability, and breadth of earnings forecast revisions, summarized in Bruce and

311 Epstein (1994),
AU7

Brown (1999), and Ramnath et al. (2008)
AU8

. The vast majority of the

312 earnings forecasting literature in the Bruce and Brown references find that the use of

313 earnings forecasts does not increase stockholderwealth, as specifically tested in Elton

314 et al. (1981) in their consensus forecasted growth variable, FGR. Reported earnings

315 follow a randomwalk with drift process, and analysts are rarely more accurate than a

316 no-change model in forecasting eps [Cragg and Malkiel (1968) AU9]. Analysts become

317 more accurate as time passes during the year, and quarterly data are reported. Analyst

318 revisions are statistically correlated with stockholder returns during the year

319 [Hawkins et al. (1984) and Arnott (1985)]. Wheeler (1994) AU10developed and tested a

320 strategy in which analyst forecast revision breadth, defined as the number of upward

321 forecast revisions subtracted by the number of downward forecast revisions, divided

322 by the total number of estimates, was the criteria for stock AU11selection. Wheeler found

323 statistically significant excess returns from the breadth strategy. A composite earn-

324 ings variable, CTEF, is calculated using equally weighted revisions, RV; forecasted

325 earnings yields, FEP; and breadth, BR, of FY1 and FY2 forecasts, a variable put forth

326 in Guerard (1997) and further tested in Guerard et al. (1997). Adding I/B/E/S

327 variables in the form of CTEF added to the eight value ratios in Guerard and Takano

328 (1991) produced more than 2.5% of additional annualized return [Guerard et al.

329 (1997)] AU12. The finding of significant predictive performance value for I/B/E/S variables

330 indicates that analyst forecast information has value beyond purely statistical extrap-

331 olation of past value and growth measures. Guerard (2006) reported the growing

332 importance of earnings forecasts, revisions, and breadth in Japan and the USA,

333 particularly with respect to smaller capitalized securities.

334 Momentum investing was studied by academics at about the same time that

335 earnings forecasting studies were being published. Levy (1967)
AU13

, Arnott (1979)
AU14

, and

336 Brush and Boles (1983) found statistically significant power in relative strength.

337 The Brush and Boles analysis was particularly valuable because it found that the

338 short-term (3-month) financial predictability of a naı̈ve monthly price momentum

339 model, taking the price at time t � 1 divided by the price 12 months ago, t � 12,

340 was as statistically significant at identifying underpriced securities as using the

341 alpha of the market model adjusted for the security beta. Brush and Boles found that

342 beta adjustments slightly enhanced the predictive power in the 6–12-month periods.

343 Brush (2001) is an excellent 20-year summary of the price momentum literature.

344 Fama and French (1992, 1995) AU15used a price momentum variable using the price

345 2 months ago divided by the price 12 months ago, thus avoiding the well-known

346 return or residual reversal effect. The Brush et al. (2004) AU16and Fama studies find

347 significant stock price anomalies, even with Korajcyk and Sadka using transactions

348 costs. The vast majority find that the use of 3-, 6-, and 12-month price momentum
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349variables, often defined as intermediate-term variables, is statistically significantly

350associated with excess returns.

351Guerard et al. (2012) added a Brush-based price momentum: taking the price at

352time t � 1 divided by the price 12 months ago, t � 12, denoted PM, and the

353consensus analysts’ earnings forecasts and analysts’ revisions composite variable,

354CTEF, to the stock selection model, one can estimate an expanded stock selection

355model to use as an input to an optimization analysis. The stock selection model

356estimated in this chapter, denoted as the United States Expected Returns, USER, is

TRtþ1 ¼ a0 þ a1EPt þ a2BPt þ a3CPt þ a4SPt þ a5REPt þ a6RBPt

þ a7RCPt þ a8RSPt þ a9CTEFt þ a10PMt þ et; (4.13)

357where:

358EP ¼ [earnings per share]/[price per share] ¼ earnings–price ratio;

359BP ¼ [book value per share]/[price per share] ¼ book–price ratio;

360CP ¼ [cash flow per share]/[price per share] ¼ cash flow–price ratio;

361SP ¼ [net sales per share]/[price per share] ¼ sales–price ratio;

362REP ¼ [current EP ratio]/[average EP ratio over the past 5 years];

363RBP ¼ [current BP ratio]/[average BP ratio over the past 5 years];

364RCP ¼ [current CP ratio]/[average CP ratio over the past 5 years];

365RSP ¼ [current SP ratio]/[average SP ratio over the past 5 years];

366CTEF ¼ consensus earnings-per-share I/B/E/S forecast, revisions, and breadth;

367PM ¼ Price Momentum; and

368e ¼ randomly distributed error term.

369TheUSERmodel is estimated usingWLRR analysis in (4.13) to identify variables

370statistically significant at the 10% level; uses the normalized coefficients as weights;

371and averages the variable weights over the past 12 months. The 12-month smoothing

372is consistent with the four-quarter smoothing in Guerard and Takano (1991) AU17and

373Bloch et al. (1993).

374While EP and BP variables are significant in explaining returns, the majority of

375the forecast performance is attributable to other model variables, namely, the

376relative earnings-to-price, relative cash-to-price, relative sales-to-price, price

377momentum variable, and earnings forecast variable. The consensus earnings

378forecasting variable, CTEF, and the price momentum variable, PM, dominate the

379composite model, as is suggested by the fact that the variables account for 45% of

380the model average weights.

381Earnings forecasts, revisions, and directions of revisions are key variables in stock

382selectionmodeling. The asset selection of the CTEF variable is highly significant, see

383Guerard (2012). The average our-quarter smoothed regression coefficients AU18are:

384Time-average value of estimated coefficients:

385a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
3860.044 0.038 0.020 0.038 0.089 0.086 0.187 0.122 0.219 0.224
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387 In terms of information coefficients, ICs, the use of the WLRR procedure

388 produces the higher IC for the models during the 1998–2007 time period, 0.043,

389 versus the equally weighted IC of 0.040, a result consistent with the previously

390 noted studies.

391 Let us examine the WLRR SAS output for estimating (4.13) using OLS, ROB

392 using the Beaton–Tukey approximation, and the WLRR techniques for the month

393 of January 2008.

394 The EP, RCP, RSP, and CTEF variables have the (correct) positive coefficients

395 and are statistically significant in the OLS regression, having t-values that exceed

396 1.645, the critical 10% level; see Table 4.4. The regression F-statistic of 28.53

397 indicates that the overall regression is highly statistically significant for the 3,482

398 firm sample in January 2008. The adjusted R-squared statistic of 0.073 is quite high
399 for cross-sectional regressions (across securities, at one point in time). The

400 F-Statistic of 28.53 is statistically significant at the 1% level. The estimated OLS

401 regression is plagued by outliers, as one sees in Fig. 4.1. The studentized residuals,

402 RStudent, discussed in Chap. 2 and shown in Fig. 4.1, indicate the presence of

403 outliers. A scaled residual known as the Cook distance measure, CookD, or Cook’s

404 D, also is shown in Fig. 4.1 and confirms the RStudent result.

t4:1 Table 4.4 OLS NREG0801 the REG procedure model: MODEL1-dependent variable: RET0801

Number of observations read 3,656t4:2

Number of observations used 3,482t4:3

Number of observations with missing values 174t4:4

Analysis of variancet4:5

Source DF Sum of squares Mean square F value Pr > Ft4:6

Model 10 256.20661 25.62066 28.53 <0.0001t4:7

Error 3,471 3,117.52880 0.89816t4:8

Corrected total 3,481 3,373.73542t4:9

Root MSE 0.94772 R-square 0.0759t4:10

Dependent mean 0.01606 Adj R-sq 0.0733t4:11

Coeff Var 5,899.57118t4:12

Parameter estimatest4:13

Variable DF Parameter estimate Standard error t value Pr > |t|t4:14

Intercept 1 0.01391 0.01606 0.87 0.3867t4:15

EP0801 1 0.18965 0.06321 3.00 0.0027t4:16

BP0801 1 �0.01773 0.03834 �0.46 0.6437t4:17

CP0801 1 �0.15718 0.07192 �2.19 0.0289t4:18

SP0801 1 0.01553 0.04074 0.38 0.7031t4:19

REP0801 1 0.01093 0.01573 0.69 0.4873t4:20

RBP0801 1 0.01767 0.01807 0.98 0.3283t4:21

RCP0801 1 0.02961 0.01579 1.87 0.0609t4:22

RSP0801 1 0.14622 0.02064 7.08 <0.0001t4:23

CTEF0801 1 0.11279 0.02995 3.77 0.0002t4:24

PM0801 1 �0.16049 0.02055 �7.81 <0.0001t4:25
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405Most of the USER variables are associated with OLS outliers, see Fig. 4.2. The

406BP, CP, SP, RSP, and PM variables are particularly associated with outliers in

407the January 2008 regression, Fig. 4.3 AU19.

408The application of the Beaton–Tukey (BT) outlier-adjustment procedure, used in

409Bloch et al. (1993), increases the F-Statistics from its OLS value of 28.53 to 34.22.

410Please see Table 4.5. The BT procedure produces positive and statistically signifi-

411cant coefficients on the EP, RSP, and EF (CTEF) variables. The BT procedure

412reduces the studentized residuals and Cook’s D calculated values. Thus, the effect

413of outliers has been substantially reduced by the Beaton–Tukey Robust Regression

414application.

415The application of the principal components regression analysis, WIPC, in the

416SAS proc IML procedure approximates of Bloch et al. WLRR. The WIPC
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Fig. 4.2 OLS residuals by independent variables T
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417regression analysis shows that the weighted EP, CP, RSP, and CTEF variables are

418highly statistically significantly associated with security returns in January 2008.

419WRDS WIPC 0801

420VARN PC9S TPC9

421WEP0801 0.044 4.618

422WBP0801 �0.023 �3.112

423WCP0801 0.035 4.506

424WSP0801 �0.020 �2.672

425WREP0801 0.011 0.992

426WRBP0801 0.008 0.489

427WRCP0801 0.018 1.352

428WRSP0801 0.127 6.615

429WEF0801 0.138 5.462

430WPM0801 �0.190 �9.768

Fig. 4.3 Robust regression diagnostics-dependent variable: WTR0801 T
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431The F-Statistic of ROB exceeds the OLS F-Statistic approximately 90% of the

432months. The ultimate test of OLS, ROB, and WLRR analyses can be found in the

433Bloch et al. simulations which report higher Geometric Means, Sharpe Ratios, and

434F-Statistics using WLRR than OLS in estimating models of the determinants of

435monthly security returns. Moreover, regression weighting of variables

436outperformed equally weighting the variable in security returns models. We have

437briefly surveyed the academic literature on anomalies and found substantial evi-

438dence that valuation, earnings expectations, and price momentum variables are

439significantly associated with security returns. Further evidence on the anomalies is

440found in
AU20

Levy (1999)
AU21

.7 We will create portfolios with the USER Model in Chap. 6

441and explore more regression modeling of global returns in Chap. 7.

442Summary and Conclusions

443We have used two case studies to illustrate the effectiveness of regression

444modeling. Regression analysis offered marginal improvement in the case of com-

445bining GNP forecasts, but offered substantial improvement in identifying financial

7 Haugen and Baker (2010) extended their 1996 study in a recent volume to honor Harry

Markowitz. Haugen and Baker estimate their model using weighted least squares. In a given

month they estimated the payoffs to a variety of firm and stock characteristics using a weighted

least squares multiple regression in each month in the period 1963 through 2007. Haugen and

Baker found the most significant factors were; Residual Return is last month’s residual stock return

unexplained by the market.

• Cash Flow-to-Price is the 12-month trailing cash flow-per-share divided by the current price.

• Earnings-to-Price is the 12-month trailing earnings-per-share divided by the current price.

• Return on Assets is the 12-month trailing total income divided by the most recently reported

total assets.

• Residual Risk is the trailing variance of residual stock return unexplained by market return.

• 12-month Return is the total return for the stock over the trailing 12 months.

• Return on Equity is the 12-month trailing eps divided by the most recently reported book

equity.

• Volatility is the 24-month trailing volatility of total stock return.

• Book-to-Price is the most recently reported book value of equity divided by the current market

price.

• Profit Margin is 12-month trailing earnings before interest divided by 12-month trailing sales.

• 3-month Return is the total return for the stock over the trailing 3 months.

• Sales-to-Price is 12-month trailing sales-per-share divided by the market price.

The four measures of cheapness in the USER model: cash-to-price, earnings-to-price, book-to-

price, and sales-to-price, all have significant positive payoffs. Haugen and Baker (2010) find

statistically significant results for the four fundamental factors as did the previously studies we

reviewed. The Haugen and Baker (2010) analysis and results are consistent with the Bloch et al.

(1993) model.
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446 variables associated with security returns. Regression models addressing outliers

447 and multicollinearity problems outperformed equally weighted strategies in stock

448 selection modeling.
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1Chapter 5

2Transfer Function Modeling and Granger

3Causality Testing

4In this chapter we fit univariate and bivariate time series models in the tradition of

5Box and Jenkins (1976) and Granger and Newbold (1977) AU1and apply traditional

6Granger causality testing following the Ashley et al. (1980) methodology. Second,

7we estimate Vector Autoregressive Models (VAR) and Chen and Lee (1990) Vector

8ARMA (VARMA) causality test. We test two series for causality: (1) stock prices

9and mergers and (2) the money supply and stock prices.

10Testing for Causality: The Ashley et al. (1980) Test

11There is a large and growing literature on causality testing in economics. Clive

12Granger, one of the great minds in time series, reminds us that The phrase “X causes

13Y” must be handled with considerable delicacy, as the concept of causation is a very

14subtle and difficult one (Ashley et al. (1980)). We will refer to Ashley et al. (1980)

15as AGS (1980). Granger held that a universally acceptable definition of causation

16may well not be possible, but a reasonable definition might be the following: Let On

17represent all the information available in the universe at time n. Suppose that at time

18n optimum forecasts are made of Xn+1 using all of the information in On and also

19using all of this information apart from the past and present values Yn�j, j � 0, of

20the series Yt. If the first forecast, using all the information, is superior to the second,

21then the series Yt has some special information about Xt, not available elsewhere,

22and Yt is said to cause Xt. Before applying this definition, one must establish the

23criteria to decide if one forecast is superior to another. The usual procedure is to

24compare the relative mean-square errors of post-sample forecasts, as we discussed

25in Chap. 1.

26To make the suggested definition suitable for practical use a number of

27simplifications have to be made. Linear forecasts only will be considered, together

28with the usual least-squares loss function, and the information set On has to be
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29 replaced by the past and present values of some set of time series, Rn: {Xn�j, Yn�j,

30 Zn�j, . . .., j � 0}. Any causation now found will only be relative to Rn; spurious

31 results can occur if some vital series is not in this set.

32 The simplest case is when Rn consists of just values from the series Xt and Yt,
33 where now the definition reduces to the following: let MSE (X) be the population

34 mean-square of the one-step forecast error of Xm+1 using the optimum linear

35 forecast based on Xn�j, j � 0, and let MSE (X, Y) be the population mean-square

36 of the one-step forecast error of Xn+1 using the optimum linear forecast based on

37 Xn�j, Yn�j j � 0. Then Y causes X if MSE (X, Y) < MSE (X). The testing involving
38 the definition of causation (stated in terms of variances rather than mean-square

39 errors) was introduced into the economic literature by Granger (1969) and it has

40 been applied by Sims (1972) and Ashley et al. (1980), which we will refer to as

41 AGS (1980).

42 AGS (1980) proposed several step approach to the analysis of causality between

43 a pair of time series Xt and Yt:

44 (i) Each series is prewhitened by building single-series ARIMA models using the

45 Box–Jenkins procedure.

46 (ii) Form the cross-correlogram between these two residual series,

rk ¼ corrðres xt; res yt�kÞ:

47 (iii) For positive and negative values of k: If any rk for k > 0 are significantly

48 different from zero, there is an indication that Yt may be causing Xt, since the

49 correlogram indicates that past Yt may be useful in forecasting Xt. Similarly, if

50 any rk is significantly nonzero for k < 0, Xt appears to be causing Yt. If both
51 occur, two-way causality, or feedback, between the series is indicated. AGS

52 (1980) note that the sampling distribution of the rk depends on the exact

53 relationship between the series. On the null hypothesis of no relationship, it

54 is well known that the rk are asymptotically distributed as independent normal

55 with means zero and variances 1/n, where n is the number of observations

56 employed, but the experience shows that the test suggested by this result

57 must be used with extreme caution in finite samples.1 In practice, we also

58 use a priori judgement about the forms of plausible relations between eco-

59 nomic time series. Thus for example, a value of r1 well inside the interval

60 �2
ffiffiffi
n

p
= ; þ2

ffiffiffi
n

p
=½ �might be tentatively treated as significant, while a substan-

61 tially larger value of r7 might be ignored if r5, r6, r8, and r9 are all negligible.
62 This step is analogous to the univariate Box–Jenkins identification step,

63 where a tentative specification is obtained by judgmental analysis of a

64 correlogram. The key word is “tentative”; the indicated direction of causation

65 is only tentative at this stage and may be modified or rejected on the basis of

66 subsequent modeling and forecasting results.

1 One must apparently be even more careful with the Box–Pierce test on sums of squared rk.
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67(iv) For every indicated causation, a bivariate model relating the residuals is

68identified, estimated, and diagnostically checked. If only one-way causation

69is present, the appropriate model is unidirectional and can be identified directly

70from the shape of the cross-correlogram, see Granger and Newbold (1977).

71(v) From the fitted model for residuals, after dropping insignificant terms, the

72corresponding model for the original series is derived, by combining the

73univariate models with the bivariate model for the residuals. It is then checked

74for common factors, estimated, and diagnostic checks applied.2

75(vi) Finally, the bivariate model for the original series is used to generate a set of

76one-step forecasts for a post-sample period. The corresponding errors are then

77compared to the post-sample one-step forecast errors produced by the univari-

78ate model developed in step (i) to see if the bivariate model actually does

79forecast better.3 The use of sequential one-step forecasts follows directly from

80the definition above and avoids the problem of error buildup that would

81otherwise occur as the forecast horizon is lengthened.

82Because of specification and sampling error (and perhaps some structural

83change) the two forecast error series thus produced are likely to be cross-correlated

84and autocorrelated and to have nonzero means. In light of these problems, no direct

85test for the significance of improvements in mean-squared forecasting error appears

86to be available. Consequently, we have developed the following indirect procedure.

87For some out-of-sample observation, t, let e1r and e2r be the forecast errors made

88by the univariate and bivariate models, respectively, of some time series. Elemen-

89tary algebra then yields the following relation among sample statistics for the entire

90out-of-sample period:

MSEðe1Þ �MSEðe2Þ ¼ ½s2ðe1Þ � s2ðe2Þ� þ ½mðe1Þ2 � mðe1Þ2�; (5.1)

91where MSE denotes sample mean-squared error, s2 denotes sample variance, and m
92denotes sample mean. Letting

Dt ¼ e1t � e2t and
X
2

¼ e1t þ e2t; (5.2)

2OLS estimation suffices to produce unbiased estimates, since all the bivariate models considered

are reduced forms. It also allows one to consider variants of one equation without disturbing the

forecasting results from the other, and it is computationally simpler. On the other hand, where

substantial contemporaneous correlation occurs between the residuals, seemingly unrelated

regression GLS estimation can be expected to yield noticeably better parameter estimates and

post-sample forecasts. All estimation in this study is OLS; a re-estimation of our final bivariate

model using GLS might strengthen our conclusions somewhat.
3 Alternatively, one might fit both models to the sample period, produce forecasts of the first post-

sample observation, reestimate both models with that observation added to the sample, forecast the

second post-sample observation, and so on until the end of the post-sample period. This would, of

course, be more expensive than the approach in the text.
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93 equation (5.1) can be rewritten as follows, even if e1t and e2t are correlated:

MSEðe1Þ �MSEðe2Þ ¼ dcov D;
X� �h i

þ ½mðe1Þ2 � mðe2Þ2�; (5.3)

94 wheredcov denotes the sample covariance over the out-of-sample period.

95 Let us assume that both error means are positive; the modifications necessary in

96 the other cases should become clear. Consider the analogue of (5.3) relating

97 population parameters instead of sample statistics, and let cov denote the popula-

98 tion covariance and m denote the population mean. From (5.3), it is then clear that

99 we can conclude that the bivariate model outperforms the univariate model if we

100 can reject the joint null hypothesis cov (D, ∑) ¼ 0 and m(D) ¼ 0 in favor of the

101 alternative hypothesis that both quantities are nonnegative and at least one is

102 positive.

103 Now consider the regression equation

Dt ¼ b1 þ b2
X
t

� m
X
t

 !" #
þ mt; (5.4)

104 where mt is an error term with mean zero that can be treated as independent of ∑t.

105 From the algebra of regression, the test outlined in the preceding paragraph is

106 equivalent to testing the null hypothesis b1 ¼ b2 ¼ 0 against the alternative that

107 both are nonnegative and at least one is positive. If either of the two least squares

108 estimates, b̂1 and b̂2, is significantly negative, the bivariate model clearly cannot be

109 judged a significant improvement. If one estimate is negative but not significant, a

110 one-tailed t test on the other estimated coefficient can be used. If both estimates are

111 positive, an F test of the null hypothesis that both population values are zero can be

112 employed. But this test is, in essence, four-tailed; it does not take into account the

113 signs of the estimated coefficients. If the estimates were independent, it is clear that

114 the probability of obtaining an F-statistic greater than or equal to F0, say, and

115 having both estimates positive is equal to one-fourth the significance level

116 associated with F0. Consideration of the possible shapes of iso-probability curves

117
for b̂1; b̂2

� �
under the null hypothesis that both population values are zero

118 establishes that the true significance level is never more than half the probability

119 obtained from tables of the F distribution. If both estimates are positive, then one

120 can perform an F test and report a significance level equal to half that obtained from

121 the tables.

122 The approach just described differs from others that have been employed to

123 analyze causality in its stress on models relating the original variables and on post-

124 sample forecasting performance. We now discuss these two differences.
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125Models directly relating the original variables provide a sounder, as well as a

126more natural basis for conclusions about causality. As has been argued in detail by

127Granger and Newbold (1977), however, prewhitening and analysis of the cross-

128correlogram of the prewhitened series are useful steps in the identification of

129models relating the original series, since the cross-correlogram of the latter is likely

130to be impossible to interpret sensibly. Because the correlations between the

131prewhitened series (the rk) have unknown sampling distributions, this analysis

132involves subjective judgements, as does the identification step in univariate

133Box–Jenkins analysis. AGS (1980) state that in neither case is an obviously better

134approach available, and in both cases the tentative conclusions reached are

135subjected to further tests.

136It is somewhat less clear how out-of-sample data are optimally employed in an

137analysis of causality. This question is closely related to fundamental problems of

138model evaluation and validation and is complicated by sampling error and possible

139specification error and time-varying coefficients. The riskiness of basing

140conclusions about causality entirely on within-sample performance is reasonably

141clear. Since the basic definition of causality is a statement about forecasting ability,

142it follows that tests focusing directly on forecasting are most clearly appropriate.

143Indeed, it can be argued that goodness-of-fit tests (as opposed to tests of forecasting

144ability) are contrary in spirit to the basic definition.4 Moreover, within-sample

145forecast errors have doubtful statistical properties in the present context when the

146Box–Jenkins methodology is employed. While the power of that methodology has

147been demonstrated in numerous applications and rationalizes our use of it here, it

148must be noted that the identification (model specification) procedures in steps

149(i)–(iv) above involve consideration and evaluation of a wide variety of model

150formulation. A good deal of sample information is thus employed in specification

151choice, and there is a sense in which most of the sample’s real degrees of freedom

152are used up in this process. It thus seems both safer and more natural to place

153considerable weight on out-of-sample forecasting performance.

154The approach outlined above uses the post-sample data only in the final step, as a

155test track over which the univariate and bivariate models are run in order to

156compare their forecasting abilities. This approach is of course vulnerable to unde-

157tected specification error or structural change. Partly as a consequence of this, the

158likely characteristics of post-sample forecast errors render testing for performance

159improvement somewhat delicate, as we noted above. Finally, the appropriate

160division of the total data set into sample and post-sample periods in the AGS

4 If one finds that one model (using a wider information set, say) fits better than another, one is

really saying “If I had known that at the beginning of the sample period, I could have used that

information to construct better forecasts during the sample period.” But this is not strictly

operational and thus seems somewhat contrary in spirit to the basic definition of causality that

we employ.
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161 (1980) approach is unclear, and this is a nontrivial problem.We do not want to seem

162 overly dogmatic on this issue. Our basic point is simply that model specification

163 (perhaps especially within the Box–Jenkins framework) may well be infected by

164 sampling error and polluted by data mining, so that it is unwise to perform tests for

165 causality on the same data set used to select the models to be tested.

166 AGS applied their methodology to aggregate advertising and consumption

167 during the 1956–1975 period. The bivariate aggregate consumption model,

168 using aggregate advertising as its input, reduced the out-of-sample forecasting

169 error by only 5.1 % relative to the univariate aggregate consumption model,

170 indicating that aggregate advertising does not cause aggregate consumption. The

171 bivariate aggregate advertising model, using aggregate consumption as its input,

172 reduced the out-of-sample forecasting error by 26 % relative to the univariate

173 aggregate advertising model, indicating that aggregate consumption causes aggre-

174 gate advertising.

175 Quarterly Mergers, 1992–2011: Automatic Time Series

176 Modeling and an Application of the Ashley et al. (1980) Test

177 Let us explore further the AGS (1980) approach using a case study of aggregate

178 mergers using Mergerstat quarterly data from 1992 to 2011. There is a well-

179 established history of mergers and stock prices.5 Guerard (1985) used the AGS

180 (1980) bivariate transfer function causality testing methodology and reported that

181 stock prices led mergers over the Nelson quarterly data from 1895 to 1954. Guerard

182 reported that the bivariate merger model, with stock prices as its input, reduced the

183 out-of-sample forecasting errors by 35.7 % less than the univariate time series

184 merger model. Thus, quarterly stock prices led mergers over the 1895–1954 period.

185 We use the AGS (1980) approach to model mergers as a function of leading

186 economic indicators (LEI) and stock prices (using the S&P 500). Most economic

5 The merger history of the United States was studied by Nelson (1959), who reported that mergers

were highly correlated with stock prices and industrial production from 1895 to 1954. Nelson

(1966) later found that stock prices lead mergers by over 5 months (5.25) over the 1919–1961

period. Melicher et al. (1983) and Guerard (1985) used ARIMA and transfer function modeling to

find that stock prices lead mergers. Guerard and McDonald (1995) reported that the annual merger

series from 1895 to 1979 was a near-random walk and that outlier-estimated time series models did

not statistically outperform the naı̈ve random walk with drift model. Golbe and White (1993) fit a

sine wave to a “spliced” US annual merger history and found that a sine wave, representing a 40-

year merger model, described the behavior of mergers.
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187historians recite the major merger movements AU2and their “waves” since 1895.6

188A time series of the US quarterly data is obtained from the FactSet Mergerstat

189database for 1992–2011Q2. The data is read into Oxmetrics. We run an analysis of

190the quarterly data in which the change in the logarithmic transformation (dlog) of

191mergers is a function of the dlog components of the LEI published by The

6 The US merger history was characterized by George Stigler (1950) to have occurred in three

waves. The first major merger movement began in 1879, with the creation of the Standard Oil

Trust, and ended with the depression of 1904. During the merger movement, giant corporations

were formed by the combination of numerous smaller firms. The smaller companies represented

nearly all the manufacturing or refining capacity of their industries. The forty largest firms in the

oil-refining industry, comprising over ninety percent of the country’s refining capacity and oil

pipelines for its transportation, combined to form Standard Oil. In the two decades following the

rise of Standard Oil, similar horizontal mergers created single dominant firms in several industries.

These dominant firms included the Cottonseed Oil Trust (1884), the Linseed Oil Trust (1885), the

National Lead Trust (1887), the Distillers and Cattle Feeders (1887), and the Sugar Refineries

Company (1887). The trust form of organization was outlawed by court decisions. But merger

activities continued to create “near” monopolies as the single corporation or holding company

organization became dominant. The Diamond Match Company (1889), the American Tobacco

Company (1890), the United States Rubber Company (1892), the General Electric Company

(1892), and the United States Leather Company (1893) were created by the development of the

modern corporation or holding company.

The height of the merger movement was reached in 1901 when 785 plants combined to form

America’s first billion-dollar firm, the United States Steel Corporation. The series of mergers

creating the US Steel allowed it to control 65 % of the domestic blast furnace and finished steel

output. This growth in concentration was typical of the first merger movement. The early mergers

saw 78 of 92 large consolidations gain control of 50 % of their total industry output, and 26 secure

80 % or more.

The first major merger movement occurred during a period of rapid economic growth. The

economic rationale for the large merger movement was the development of the modern corpora-

tion, with its limited liability, and the modern capital markets, which facilitated the consolidations

through the absorption of the large security issues necessary to purchase firms. Nelson found that

the mergers were highly correlated to the period’s stock prices and industry production. However,

mergers were more sensitive to stock prices. The expansion of security issues allowed financiers

the financial power necessary to induce independent firms to enter large consolidations. The

rationale for the first merger movement was not one of trying to preserve profits despite slackening

demand and greater competitive pressures. Nor was the merger movement the result of the

development of the national railroad system, which reduced geographic isolation and transporta-

tion costs. The first merger movement ended in 1904 with a depression, the onset of which

coincided the Northern Securities case. Here it was held, for the first time, that antitrust laws

could be used to attack mergers leading to market dominance.

A second major merger movement stirred the country from 1916 to the depression of 1929. This

merger movement was only briefly interrupted by the First World War and the recession of 1921

and 1922. The approximately 12,000 mergers of the period coincided with the stock market boom

of the 1920s. Although mergers greatly affected the electric and gas utility industry, market

structure was not as severely concentrated by the second movement as it was by the first merger

movement. Stigler (1950) concluded that mergers during this period created oligopolies, such as

Bethlehem Steel and Continental Can. Mergers, primarily vertical and conglomerate in nature as

opposed to the essentially horizontal mergers of the first movement, did affect competition

adversely. The conglomerate product-line extensions of the 1920s were enhanced by the high-

cross elasticities of demand for the merging companies’ products Lintner (1971). Antitrust laws,
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192 Conference Board. An AR(1) process adequately models the quarterly mergers

193 series, using 32 observations for the estimation period, see Table 5.1, as the partial

194 autocorrelation (PAC) function dies after lag 1. A time series regression of mergers

195 as a function of the components of the LEI reveals that only stock prices and the

196 money supply are statistically significant at the 15 % level; moreover, the money

197 supply variable has an incorrectly negative coefficient, see (5.5). An application of

198 the Automatic Modeling Selection procedure, see (5.6), leads to only the negative

199 money supply. Guerard reported a four-quarter lag in the relationship between

200 mergers and stock prices from 1895 to 1954. We expect lags in the LEI to lead

201 mergers. We use one- and two-quarter lags in the LEI data (see Table 5.2 for the

202 cross-correlation estimate) and report in (5.8) that the one-period lagged stock

203 price series is statistically correlated with mergers. In (5.8), (5.9), and (5.10), we

204 report that the current and one-period lagged stock price data leads mergers. The

205 F-statistic of (5.10) dominates the F-statistics of (5.8) and (5.9) in which we run

206 regressions of mergers as a function of the LEI data. There is a statistically

207 significant two-quarter lag with LEI and mergers; however, the effect is less

208 statistically pronounced than the stock price data. An application of the Doornik

209 and Hendry (2009a, b) AU3Automatic Modeling Selection procedure, see (5.7), leads to

210 a one-period lag in stock prices and four outliers. A further application of the

211 Doornik and Hendry (2009a, b) Automatic Modeling Selection cointegration pro-

212 cedure, see SYS (10), leads to a one-period lag in stock prices and four outliers.

though not seriously enforced, prevented mergers from creating a single dominant firm. Merger

activity diminished with the depression of 1929 and continued to decline until the 1940s.

The third merger movement began in 1940; mergers reached a significant proportion of firms in

1946 and 1947. The merger action from 1940 to 1947, although involving 7.5 % of all

manufacturing and mining corporations and controlling 5 % of the total assets of the firms in

those industries, was quite small compared to the merger activities of the 1920s. The mergers of

the 1940s included only one merger between companies with assets exceeding 50 million dollars

and none between firms with assets surpassing 100 million dollars. The corresponding figures for

the mergers of the 1920s were 14 and eight, respectively. Eleven firms acquired larger firms during

the mergers of the 1920s than the largest firm acquired during the 1940s merger. The mergers of

the 1940s affected competition far less than did the two previous merger movements, with the

exception of the food and textile industries. The acquisitions by the large firms during the 1940s

rarely amounted to more than seven percent of the acquiring firms’ 1939 assets or to as much as a

quarter of ~ the acquiring firm’s growth rate from 1940 to 1947. Approximately 5 billion dollars

of assets were held by acquired or merged firms over the 1940–1947 period. Smaller firms were

generally acquired by larger firms. Companies with assets exceeding 100 million dollars acquired,

on average, firms with assets of less than two million dollars. The larger firms tended to engage in a

greater number of acquisitions than smaller firms. The acquisitions by the larger, acquiring firms

tended to involve more firms than did those acquired by smaller, acquiring firms. Mergers added

relatively less to the existing size of the larger acquiring firms in the early period of the third

merger movement. The relatively smaller asset growth of the larger acquiring firms is in accor-

dance with the third merger movement’s generally small effects on competition and concentration.

One factor contributing to the maintenance of competition was the initiative for the mergers

coming from the owners of the smaller firms. Financiers and investment bankers did not play a

prominent part in the early third merger movement, but certainly have in the 1992–2011 period.
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213If one applies the Ashley et al. (1980) transfer function causality test to the

214mergers and stock price series, one finds a t-value of 0.57 on the stock price series.

215That is, a transfer function merger model using one-period lagged stock prices as an

216input reduces the root mean square root relative to a random-walk with drift model,

217but the forecast error reduction is not statistically significant, a result reported by

t2:1Table 5.2 Quarterly mergers, 1992–2011, cross-correlation function

estimates

DDMERGERS,DLEI(

Sample 1 32
Included observations: 32
Correlations are asymptotically consistent approximations

-i) DDMERGERS,DLEI(+i) i lag lead

.  *|   .     | .  *|   .     | 0 -0.0949 -0.0949

.  *|   .     | .   |*  .     | 1 -0.1243 0.1088

.   |*  .     | .   |***.     | 2 0.1017 0.2784

.***|   .     | . **|   .     | 3 -0.3371 -0.1761

.  *|   .     | .   |*  .     | 4 -0.0897 0.1190

.   |   .     | .   |** .     | 5 -0.0390 0.1976

.   |*  .     | .   |*  .     | 6 0.0523 0.1242

. **|   .     | .   |   .     | 7 -0.1949 0.0298

.   |** .     | .  *|   .     | 8 0.2065 -0.1144

t2:2

t1:1Table 5.1 Quarterly mergers, 1992–2011, autocorrelation function estimates

Autocorrelation

Sample 1 32

Partial Correlation AC PAC Q-Stat Prob

***|  .    | ***|  .    | 1 -0.430 -0.430 6.4786 0.011
.  |**.    | .  |* .    | 2 0.289 0.129 9.5172 0.009
.**|  .    | . *|  .    | 3 -0.297 -0.167 12.836 0.005
.  |**.    | .  |* .    | 4 0.323 0.163 16.883 0.002
***|  .    | . *|  .    | 5 -0.335 -0.147 21.400 0.001
.  |**.    | .  |  .    | 6 0.220 -0.027 23.434 0.001
.**|  .    | .  |  .    | 7 -0.193 -0.013 25.051 0.001
.  |  .    | .**|  .    | 8 -0.047 -0.309 25.153 0.001
. *|  .    | . *|  .    | 9 -0.111 -0.124 25.734 0.002
.  |  .    | .**|  .    | 10 -0.028 -0.228 25.772 0.004
.  |* .    | .  |  .    | 11 0.067 0.016 26.002 0.006
. *|  .    | .**|  .    | 12 -0.185 -0.224 27.874 0.006
.  |* .    | . *|  .    | 13 0.121 -0.146 28.709 0.007
.  |  .    | .  |* .    | 14 0.022 0.127 28.737 0.011
.  |* .    | .  |  .    | 15 0.102 -0.057 29.399 0.014
.  |  .    | .  |* .    | 16 -0.008 0.112 29.403 0.021

t1:2
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218 Guerard and McDonald (1995). Ashley (1998, 2003) and Thomakos and Guerard

219 (2004) have reexamined the issue of post-sample periods for model validation and

220 relative forecasting efficiency. The purpose of this case study is to present an

221 updated and new analysis of the merger movements in the United States and the

222 relationship between mergers, stock prices, and LEI. We find additional statistical

223 correlation and regression analysis to support the historical statistical evidence that

224 stock prices lead mergers. Stock prices are a component of the LEI; however, stock

225 prices more directly lead mergers than the LEI. Stock prices do not lead mergers in

226 an Ashley, Granger, and Schmalensee causality test for the 1992–2011 period.7

7Neither stock prices nor LEI passed the AGS (1980) causality test for mergers.
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229Causality Testing: An Alternative Approach by Chen and Lee

230The most complicated task in transfer function modeling is the identification of the

231transfer function form for each input series, particularly if the transfer function

232model includes multiple-input variables. Let us use the methodology of Liu (1999)

233and Chen and Lee (1990) to employ the linear transfer function (LTF) method. The

234LTF identification method can be used in the same manner no matter if the transfer

235function model has single-input or multiple-input variables. This method is more

236practical and easier to use than the cross correlation function (CCF) method

237discussed in Box and Jenkins (1976).

238As in multiple regression models, a single-equation transfer function model

239may contain more than one input variable. Assuming that the input and output

240series are both stationary, the general form of a single-input transfer function

241model is

Yt ¼ Cþ oðBÞ
dðBÞ Xt þ Nt; Nt ¼ yðBÞ

fðBÞ at; (5.5)

242where oðBÞ ¼ ðo0 þ o1Bþ � � � þ oh�1B
h¼1ÞBb;

dðBÞ ¼ 1� d1B� � � � � frB
r;

fðBÞ ¼ 1� f1B� � � � � fpB
p;

243and

yðBÞ ¼ 1� y1B� � � � � yqBq:

244The operators f(B) and y(B) can be in simple or multiplicative form. In the

245above model, Nt is referred to as the disturbance or noise of the model, and at is a
246sequence of random shocks following i.i.d. In model (5.5), the order b in the o(B)
247polynomial is referred to as the delay of the transfer function. Box and Jenkins

248(1976) defined o(B) as

oðBÞ ¼ ðo0 � o1B� � � � � oh�1 B
h�1ÞBb: (5.6)

249By using a positive sign in front of all oj coefficients, Chen and Lee (199) state

250that the direction of changes in Yt will correspond to the direction of changes in Xt

251consistently depending on the sign of oj.

252Similar to the stationary condition for f(B), it is important to restrict all roots of

253the d(B); it is polynomial to lie outside the unit circle. Under such an assumption,

254the transfer function o(B)/d(B) can always be expressed in linear form as
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VðBÞ ¼ v0 þ v1Bþ v2B
2 þ � � � : (5.7)

255 The LTF V(B) has a finite number of terms if d(B) ¼ 1 (since V(B) ¼ o(B)) and
256 an infinite number of terms if d(B) 6¼ 1. The values v0, v1, v2, . . . are referred to as

257 transfer function weights (or impulse response weights) for the input series Xt.

258 Using V(B), the transfer function in (5.7) can be expressed in linear form as

Yt ¼ Cþ VðBÞXt þ Nt: (5.8)

259 Single-equation transfer function modeling also assumes a unidirectional rela-

260 tionship between the input and the output series, i.e., Xt may affect the present and

261 future value of Yt, but Yt does not influence Xt. The same notion holds true if there

262 are multiple-input series in the model. It is important to verify that only a

263 unidirectional influence is present among the variables in a single-equation

264 transfer function analysis. If a bidirectional or feedback relationship exists

265 among the variables, inconsistent parameter estimates may occur. It is easy to

266 extend the single-input model to multiple-input models. Assuming that we have m

267 input variables in the system, the multiple-input transfer function model can be

268 written as

Yt ¼ Cþ o1ðBÞ
d1ðBÞ X1t þ o2ðBÞ

d2ðBÞ X2t ¼ � � � þ omðBÞ
dmðBÞ Xmt þ yðBÞ

fðBÞ at; (5.9)

269 where the rational transfer function oi(B)/di(B) for each input variable has the

270 general form as defined in (5.9).

271 The identification method to be discussed in this section is applicable for both

272 single-input and multiple-input transfer function models for notational conve-

273 nience; however, the single-input model presented in (5.9) will be used here. The

274 transfer function model identification procedure can be generally divided into three

275 steps:

276 1. Estimation of the transfer function weights, vj’s
277 2. Determination of the model for the disturbance term Nt

278 3. Determination of the form of the rational polynomial o(B)/d(B) that best

279 approximates V(B)

280 The CCF is primarily used as a tool for diagnostic checking.

281 The rational transfer function o(B)/d(B) can be approximated by an LTF V(B)
282 with a finite number of terms, say K + 1. Using such an approximation, model

283 (5.10) can be expressed as

Yt ¼ Cþ ðv0 þ v1Bþ v2B
2 þ � � � þ vKB

KÞXt þ Nt: (5.10)
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284Using the above model, the transfer function weights v0, v1, v2, . . ., vK can be

285easily obtained by the ordinary least squares method.

286The use of the autoregressive disturbance models in the LTF method shall

287improve the efficiency of the transfer function eight estimates, which in turn

288shall improve the accuracy of the estimated disturbance N̂j. The values of f̂1 and

289F̂1 may also provide an indication of whether regular or seasonal differencing of the

290input and output series is necessary. After the transfer function weights are

291estimated, the disturbance series can be computed using these weights where

N̂t ¼ Yt � Ĉ� V̂ðBÞXt: (5.11)

292After the transfer function weights are estimated, the form of the rational transfer

293function o(B)/d(B) can also be determined. Recall that

VðBÞ ¼ oðBÞ
dðBÞ ¼ ðo0 þ o1Bþ � � � þ oh�1B

hÞBh

1� d1B� � � � � drBr
: (5.12)

294If d(B) ¼ 1 (i.e., r ¼ 0), then V(B) ¼ o(B) and V(B) has a cutoff pattern. On the
295other hand, if d(B) 6¼ 1 (i.e., r � 1), then V(B) is an infinite series theoretically and

296therefore has a die-out pattern. Since V̂ðBÞ is an estimate of V(B), we may conclude

297that d(B) ¼ 1 and o(B) comprise only the significant terms in V̂ðBÞ if V̂ðBÞ has a
298cutoff pattern. On the other hand when V̂ðBÞ has a die-out pattern, it implies that the

299d(B) polynomial is not 1. In such a case, the corner table method proposed in Liu

300and Hanssens (1982) AU4can be used to determine the values b, h, and r in the rational

301polynomial o(B)/d(B).
302For a set of transfer function weights vj’s, the corner table method can be used to
303identify the orders in the corresponding rational transfer function o(B)/d(B). The
304method uses a table which consists of D( f, g) as the entry of the f-th row and g-th
305column, f ¼ 0, 1, 2, . . ., g ¼ 1, 2, 3, . . ., and D( f, g) is the determinant of a g � g
306matrix defined AU5as

Dð f ; gÞ ¼

uf uf�1 ::: uf�gþ1

ufþ1 uf ::: uf�gþ2

..

. ..
.

::: ..
.

ufþg�1 ufþg�2 ::: uf

26664
37775;

307whereuj ¼ vj/vmax,uj ¼ 0 if j < 0, andvmax is themaximumvalueof |vj|, j ¼ 1,2, . . .,K.
308It can be shown that the transfer function weights vj’s have a representation

309o(B)/d(B) with order b, h, and r if the associated table has the following pattern:
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g

f

1 2 .  .  . r-1 r r+1 r+2 .  .  .

0 0 0 .  .  . 0 0 0 0 .  .  .

1 0 0 .  .  . 0 0 0 0 .  .  .

b . . . . . . . .  . .

. . . . . . . .  .  .

. . . . . . . .  .  .

b-1 0 0 .  .  . 0 0 0 0 .  .  .

b x x .  .  . x x x x .  .  .

. . . . . . . .  .  .

h . . . . . . . .  .  .

h+b-1 x x .  .  . x x x x .  .  .

h+b * * .  .  . * x 0 0 .  .  .

h+b+1 * * .  .  . * x 0 0 .  .  .

. . . .  .  . . . . . .  .  .

. . . .  .  . . . . . .  .  .

r

310
311 where a “0” denotes a zero value, an “x” denotes a nonzero value, and an “*”

312 denotes an indefinite value (may or may not be zero). In the above table, the entries

313 in the first b rows and the lower right-hand corner starting at row h + b + 1 (labeled

314 as h + b) and column r + 1 are all zeros. Therefore this table can be used to

315 determine the values of b, h, and r. We shall refer to the above table as the corner

316 table for the associated transfer function weights.

317 In practice the weights vj are estimated, and the estimates v̂j are subject to random
318 errors. Consequently, one usually finds some small values in the corner table (for

319 the zeros indicated above). However, the upper section and lower right-hand corner

320 will show a sudden drop in values. Note that in the construction of the corner table,

321 we haveDðf ; 1Þ ¼ ûf for the entries in the first column (i.e., when g ¼ 1). Since ûf is

322 the transfer function weight ûf normalized by v̂max , the significance level of the

323 values in the first column is the same as the corresponding transfer function eights

324 estimates. For the entries in the rest of the table, one compares the absolute values

325 of the entries with 1.0 to determine if the entries should be regarded as zeros. After a

326 transfer function model is identified, the next step is to estimate its parameters.

327 Representing the transfer function model as

Yt ¼ Cþ oðBÞ
dðBÞ Xt þ yðBÞ

fðBÞ at; (5.13)
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328the task is to estimate the vectors of parameters o ¼ [o0, o1, . . ., os�1]
0, and

329d ¼ [d1, d2, . . ., dr]0, f ¼ [f1, f2, . . ., fp]
0, and y ¼ [y1, y2, . . ., yq]0. If there are

330several explanatory variables we will have sever o and d AU6vectors. The exact ML

331method can be used to estimate the parameters in the transfer function model.

332After a transfer function model has been identified and estimated, it is necessary

333to verify if the model adequately fits the data. In the same way that the sample ACF

334is used in the diagnostic checking of ARIMA models, the sample CCF can be used

335in diagnostic checking of transfer function models. The sample ACF and CCF can

336be conveniently combined into sample cross correlation matrices (CCM), which

337can be used to simplify the diagnostic checking procedure. The autocorrelation of a

338time series represents the correlation between the values within a series.

339It is useful to note that the cross correlation at lag k is a generalization of

340autocorrelation at lag k since rYX(k) ¼ rY(k) cross correlation measures not only

341the strength of an association but also its direction. To see the full picture of the

342relationship between the series Yt and Xt, it is important to examine the cross

343correlations, rYK(k), for both positive and negative lags. The sequence of cross

344correlations rYK(k), k ¼ 0, �1, �2, �3, . . . is referred to as the CCF for the

345bivariate series Yt and Xt.

346The estimate of the cross covariance at lag k, gYX
(k) in (5.28) is provided by

CYKðkÞ ¼ 1

n

Xn

t¼kþ1
ðYt � �YÞðXt�k � �XÞ; k ¼ 0; 1; 2; . . .

CYKðkÞ ¼ 1

n

Xnþk

t¼1
ðYt�k � �YÞðXt � �XÞ; k ¼ 0;�1;�2; . . .

(5.14)

347and �Y and �X are the sample means of Yt and Xt series. Note that CYY(0) and CXX(0) are

348the estimates of s2Y and s2X, respectively.
349While it is workable to use CCF in diagnostic checking if only two series are

350considered, it is necessary to put the relevant CCFs into amatrix form to facilitate visual

351inspection when more than two series are involved in a study. This matrix form CCF is

352referred to as CCM. Assuming that Zt ¼ [Yt, Xt]
0, the CCM for the vector series Zt are

lag 0 1 2 3

CCM

1 rYXð0Þ
rYXð0Þ 1

� �
rYYð1Þ rYXð1Þ
rXYð1Þ rXXð1Þ
� �

rYYð2Þ rYXð3Þ
rXYð2Þ rXXð2Þ
� �

rYYð3Þ rYXð3Þ
rXYð3Þ rXXð3Þ
� �

:

353Thus the CCM contains the ACF for each series and both directions of CCFs.

354When the vector series Zt contains m time series, i.e., Zt ¼ [Z1t, Z2t, . . ., Zmt]
0, the

355lag k CCM of the vector series Zt is defined as

rðkÞ ¼

r11ðkÞ r12ðkÞ � � � r1mðkÞ
r21ðkÞ P22ðkÞ � � � P2mðkÞ

..

. ..
. � � �

� � �
..
.

rmlðkÞ rm2ðkÞ � � � rmmðkÞ

26664
37775; k ¼ 0; 1; 2; 3; . . . ; (5.15)
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356 where

rijðkÞ ¼ gijðkÞ ½giið0Þgjjð0Þ�1=2
.

357 and

gijðkÞ ¼ E½ðZit � miÞðZjðt� kÞ � mjÞ�; mi ¼ EðZitÞ:
358 Since the cross covariance gij(k) can be estimated by

CijðkÞ ¼ 1

n

Xn

t¼kþ1
ðZit � �ZiÞðZjðt�kÞ � �ZjÞ; (5.16)

359 the estimate of the cross correlation at lag k can be written as

r̂ijðkÞ ¼ CijðkÞ ½Ciið0ÞCjjð0Þ�1=2
.

: (5.17)

360 The (i, j)th element of the displayed lag kmatrix reflects the correlation between

361 Zit and Zj(t�k). In this manner, the elements of the CCM and the autoregression

362 matrices have similar interpretations.

363 The CCM provides an effective means to display the autocorrelations and cross

364 correlations jointly. The autocorrelations are represented along the matrix diagonal

365 while the cross correlations are represented by the off-diagonal elements.

366 Interpreting the sample CCM may be difficult due to the number of entries in the

367 matrices. Following Tiao and Box (1981), an effective summary of the correlation

368 structure is provided by using the indicator symbols (+, �) to replace the numerical

369 values of the elements in r̂ðkÞmatrices, where a “+” sign is employed to indicate a

370 value greater than1:96
ffiffiffi
n

p
= , a “�” sign for a value less than�1:96

ffiffiffi
n

p
= , and a “.” for

371 values in between. This device is motivated from the consideration that if the series

372 were white noise, i.e., Zit ¼ Zjt ¼ at, then for large n, the rij(k) would be normally

373 distributed with mean 0 and variance n�1.

374 As in ARIMA modeling, diagnostic checking of transfer function modeling is to

375 confirm (1) model validity and parsimony; (2) no lack of fit in the model; and (3)

376 model assumptions are satisfied. Important model assumptions include that (a) at
377 follows a white noise process and (b) at is independent of Xt and its lags. If the

378 assumption (b) is not satisfied, it means that at can be predicted by Xt and its lags,

379 and therefore there is lack of fit in the model. With this in mind, satisfaction of

380 assumption (b) also implies no lack of fit in the model. The methods and tools for

381 checking model validity and keeping model parsimony are the same as those for

382 ARIMA modeling and one should examine the time plot of residuals.

383 To verify assumption (a), the sample ACF of the residual series ât may be

384 examined. If ât is indeed a white noise process, all the sample autocorrelations of the

385 residual series should be insignificant. To verify assumption (b), the CCF between

386 the residuals and prewhitened input series should be examined. If at and Xt are

387 independent, none of the sample cross correlations should be significant.

388 To simplify the diagnostic checking procedure, we may combine the above two

389 steps into one step by suing sample CCM of the residuals and prewhitened input
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390series. Assuming the independence of the residuals and the prewhitened input

391series, the CCMs between these two series would have insignificant values for the

392entire matrix over all lags as shown below:

393The diagonal elements again represent the sample autocorrelations of the ât’s and
394the prewhitened input series while the off-diagonal elements represent the cross

395correlations of these series. The dots represent insignificant correlations. If any of

396these correlations were significant, a “+” or “�” would appear in the relevant

397matrix element. Prewhitening the input series is required to correctly test for the

398independence of two series. Suppose that the residual series at is white noise but the
399Xt series is autocorrelated. The resulting CCF would have a pattern very similar to

400the ACF of the Xt series. Thus an independence test using CCF can be conducted

401only when each series is serially uncorrelated. It is for this reason that the

402autocorrelations in the input series be removed by an ARIMA filter before the

403cross correlation test is made.

404Causality Analysis of Quarterly Mergers, 1992–2011:

405An Application of the Chen and Lee Test

406Let us consider an economic system with two variables denoted as Yt, mergers,

407andCausality Analysis of Quarterly Mergers, 1992–2011. . . Xt, LEI or stock prices.

408Denoting the optimal and unbiased forecast of Yn+1 using the information set O by

409Ŷnþ1, the conditional variance of the forecast error (which is Ynþ1 � Ŷnþ1) can be

410written as Var(Yn+1|O). If the information set O is Y, X, or {Y and X} (i.e., including
411all data in each variable up to and including t ¼ n), Var(Yn+1|O) is the one-step-

412ahead forecast variance of Yn+1 based on Y, X, or {Y and X}, respectively. Below are

413the definitions of these four possible relationships in Chen and Lee (1990):

4141. Independency (Y ∧ X). Y and X are independent if and only if

VarðYnþ1jYÞ ¼ VarðYnþ1jY;XÞ ¼ VarðYnþ1jY; X; Xnþ1Þ (5.18)

415and

VarðXnþ1jXÞ ¼ VarðXnþ1jY;XÞ ¼ VarðXnþ1jY;X; Ynþ1Þ: (5.19)

416When two time series are independent, the one-step-ahead forecast variance of

417Yn+1 based on Y will not be reduced by including additional information on X, or
418including both X and concurrent information Xn+1. Similarly, the same relation-

419ship must also hold true for the one-step-ahead forecast variance of Xn+1.
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420 Therefore when two time series are truly independent, no external information

421 (including up to the forecast origin and concurrent) can improve the one-step-

422 ahead forecast variance of Yn+1 or Xn+1.

423 2. Contemporaneous (Y $ X): Y and X are contemporaneously related if and

424 only if

VarðYnþ1jYÞ ¼ VarðYnþ1jY;XÞ (5.20)

VarðYnþ1jY; XÞ>VarðYnþ1jY;X;Nnþ1Þ (5.21)

425 and

VarðXnþ1jXÞ ¼ VarðXnþ1jY;XÞ (5.22)

VarðXnþ1jY; XÞ>VarðXnþ1jY;X; Ynþ1Þ: (5.23)

426 When two time series are contemporaneously related, the one-step-ahead fore-

427 cast variance of Yn+1 based on Y will not be reduced by including additional

428 information on X. However, when concurrent information Xn+1 for the variable X
429 is used, the one-step-ahead forecast variance of Yn+1 will be reduced. Similarly,

430 the same relationship must also hold true for the one-step-ahead forecast

431 variance of Xn+1.

432 3. Unidirectional (Y ( X): There is a unidirectional relationship from X to Y if and

433 only if

VarðYnþ1jYÞ>VarðYnþ1jY;XÞ (5.24)

434 and

VarðXnþ1jXÞ>VarðXnþ1jY;XÞ: (5.25)

435 When Y is unidirectionally influenced by X (i.e., X causes Y), the one-step-ahead
436 forecast variance of Yn+1 based on Y will be reduced by including additional

437 information on X. However, the one-step-ahead forecast variance of Xn+1 based

438 on X will not be reduced by including additional information on Y.
439 4. Feedback (Y , X): There is a feedback relationship between Y and X if and only

440 if

VarðYnþ1jYÞ>VarðYnþ1jY;XÞ (5.26)

441 and

VarðXnþ1jXÞ>VarðXnþ1jY;XÞ: (5.27)

442 When Y and X have a feedback relationship, the one-step-ahead forecast variance
443 of Yn+1 based on Y will be reduced by including additional information X, and
444 similarly, the one-step-ahead forecast variance of Xn+1 based on X will also be

445 reduced by including additional information on Y.
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446In causality testing, our goal is to determine which dynamic relationship exists

447between the variables Y and X. Chen and Lee (1990) need the reader to systemati-

448cally test the following five statistical hypotheses:

H1 : Y ^ X;

H2 : Y $ X;

H3 : Y 6 (X;

H4 : Y 6 )X; and

H5 : Y , X:

(5.28)

449The hypotheses H3 and H4 are stated in a negative manner.

450A number of time series models can be employed for causality testing (see, e.g.,

451Sims 1972; and AGS 1980). Because VARMA models have been shown to be

452effective in forecasting, this class of models can also be used for causality testing

453(Chen and Lee 1990). A bivariate VARMA (p, q) model can be generally expressed

454as

I � f1B� � � � � fpB
p

� � Yt
Xt

� �
¼ Cþ I � y1B� � � � ¼ yqBq

� � alt
a2t

� �
; (5.29)

455wherefi’s and yj’s are 2 � 2matrices,C is a 2 � 1 constant vector, and at ¼ [a1t, a2t]
0

456is a sequence of random shock vectors identically and independently distributed as a

457
normal distribution with zero mean and covariance matrix ∑ with

P¼ s11 s12
s21 s22

� �
.

458For convenience, the model in (5.29) can be rewritten as

f11ðBÞ f12ðBÞ
f21ðBÞ f22ðBÞ
� �

Yt
Xt

� �
¼ Cþ y11ðBÞy12ðBÞ

y21ðBÞy22ðBÞ
� �

alt
a2t

� �
; (5.30)

459where fij(B) ¼ fij0 � fij1B � fij2B
2 � � � �, and yij(B) ¼ yij0 � yijlB –

460yij2B
2 � � � �. It is important to note that fij0 ¼ yij0 ¼ 1 if i ¼ j, and fij0 ¼ yij0

461¼ 0 if i 6¼ j.
462Assuming that the form of the model in (5.30) is known, sufficient conditions for

463testing the hypotheses H1, H2, H3, H4, and H5 using fij(B) and yij(B) of (5.30) are
464listed below:

Hypothesis Sufficient conditions ðconstraintsÞ
H1 : Y ^ X f12ðBÞ ¼ f21ðBÞ ¼ 0; y12ðBÞ ¼ y21ðBÞ ¼ 0; s12 ¼ s21 ¼ 0:

H2 : Y $ X f12ðBÞ ¼ f21ðBÞ ¼ 0; y12ðBÞ ¼ y21ðBÞ ¼ 0:

H3 : Y 6 (X f12ðBÞ ¼ y12ðBÞ ¼ 0:

H4 : Y 6 )X f12ðBÞ ¼ y21ðBÞ ¼ 0:

H5 : Y , X No constraints: ð53:1Þ
465The conditions in (5.32) become necessary and sufficient conditions if the model

466in (5.31) is a pure vector AR or a pure vector MA model. In the above hypotheses,

467H3 implies that the past X does not help to predict future Y, and H4 implies that the
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468 past Y does not help to predict X. In both situations, we assume s12 to be nonzero.

469 However, if s12 equals to zero, the hypotheses H3, H4, and H5 can be tested under a

470 more stringent condition. Therefore the following three additional hypotheses

471 should also be considered:

Hypothesis Sufficient conditions ðConstraintsÞ
H�

3 : Y< 6 (X f12ðBÞ ¼ y12ðBÞ ¼ 0;s12 ¼ 0:

H�
4 : Y 6 )>X f21ðBÞ ¼ y21ðBÞ ¼ 0;

H�
5 : Y< , >X f12 ¼ 0: (5.32)

472 In the above hypotheses, H�
3 implies that both past and concurrent X do not help

473 to predict Y, andH�
4 implies that both past and concurrent Y do not help to predict X.

474 For H�
5, it implies a “true” feedback relationship since Y and X are not contempora-

475 neously related.

476 Chen and Lee (1990) proposed a decision tree approach which consists of testing

477 a sequence of pair-wise hypotheses that are defined by each of the above

478 relationships. This inference procedure is based on the principle that a maintained

479 hypothesis should not be rejected unless there is sufficient evidence against it. Two

480 procedures for identifying dynamic relationships are considered here: (1) the

481 backward procedure and (2) the forward procedure. The backward procedure

482 takes the position that a hypothesis should not be rejected in favor of a more

483 restrictive one unless sufficient evidence indicates otherwise. Consequently, the

484 statistical procedure starts from the most general hypothesis, H5, and then examines

485 the relative validity of competing hypotheses in an increasing order of parameter

486 restrictions. On the other hand, the forward procedure asserts that a simpler model

487 is preferred unless the evidence strongly suggests otherwise. Hence, the forward

488 procedure starts its test from the most restrictive hypothesis, H1, and moves toward

489 less restrictive hypotheses. In both procedures, each step of the test examines one or

490 two pairs of nested hypotheses. Chen and Lee (1990) state that the forward

491 procedure works better (i.e., the test procedure has higher discriminating power)

492 if the variables considered are likely to be independent or have a more restrictive

493 relationship. On the other hand, the backward procedure works better if the

494 variables considered are likely to have more complex relationships.

495 The first step of backward procedure, B1, is to examine two pairs of hypotheses:

496 (a) H3 versus H5 and (b) H4 versus H5. This step, distinguishing the feedback

497 relationship from unidirectional relationship, gives rise to four possible outcomes,

498 E1 to E4, as follows:

499 E1: H3 is not rejected in the pair-wise test (a) and H4 is rejected in the pair-wise

500 test (b).

501 E2: H3 is rejected in test (a) and H4 is not rejected in test (b).

502 E3: H3 is not rejected in test (a) and H4 is not rejected in (b).

503 E4: H3 is rejected in test (a) and H4 is rejected in text (b).
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504The outcome of E1 implies that the past information of Y may help to predict

505current X, but the past X does not help to predict current Y. Hence, this outcome

506leads to the next pair-wise test (g), H�
3 versus H3, where we try to detect the

507contemporaneous effect in the unidirectional relationship. If H�
3 is rejected in test

508(g), the conclusion, Y ) X, is reached; otherwise the conclusion, Y )> X, would
509be made. Similarly, the occurrence of events E2 and E4, respectively, suggests a

510possible unidirectional relationship from X to Y and a possible feedback relation-

511ship between Y and X. Therefore, the outcome of E2 leads to the pair-wise test (h),

512which helps us to choose between H�
4 and H4. Under the outcome of E4, it requires

513the test (i) which discriminates between the strong feedback hypothesis (H�
5) and the

514weak feedback hypothesis (H5). The rejection of H�
4 in test (h) implies Y ( X.

515Otherwise, the conclusion, Y <( X, would be reached. In test (i), the rejection of

516H�
5 implies Y , X. If H�

5 is not rejected, we can conclude Y <,> X.
517When one of the events, E1, E2, and E4, occurs in sequence B1, the backward

518procedure stops at the end of test (g), test (h), and test (i) respectively. If neither H3

519nor H4 is rejected (i.e., E3 is realized), the backward procedure will move to

520sequence B2 where two pairs of hypotheses will be examined: (c) H2 versus H3

521and (d) H2 versus H4. Again, four possible results may come out of this sequence.

522They are summarized as follows:

523E5: H2 is rejected in pair-wise test (c) but is not rejected in test (d).

524E6: H2 is not rejected in test (c) but is rejected in test (d).

525E7: H2 is rejected in either test (c) or (d).

526E8: H2 is rejected in both test (c) and text (d).

527Since test (c) examines the possibility of Y ) X and test (d) examines that of

528Y ( X, outcome E5 implies that the relationship Y ) X is more probable than

529Y ( X. Therefore, the result of event E5 leads to test (g). A similar argument

530suggests that the occurrence of E6 leads to test (h). A definitive conclusion will be

531reached at the end of tests (g) and (h). The rejection of H2 in both test (c) and test (d)

532indicates the equal possibility of Y ( X and Y ) X. Hence, the result of E8 calls

533for test (f): H2 versus H5. If H2 is rejected at test (f), then the possibility of the

534feedback relationship is established and the backward procedure moves to test (i).

535When H2 is not rejected at test (f) or when event E7 is realized, the backward

536procedure then proceeds to test (e), which discriminates between the independency

537and the contemporaneous relationship. If H1 is rejected in test (e), the conclusion of

538Y $ X is reached. Otherwise, Y ∧ X will be the case.

539The forward procedure, as illustrated in the previous section, begins by testing

540the validity of the independency hypothesis at sequence F1. The hypothesis indices,

541H1 to H5, the outcome indices, E1 to E8, and the pair-wise test indices, (a) to (h), are

542consistent. The sequence F1 considers two pairs of hypotheses testing, test (e) and

543test (j). If h1 is not rejected in either test, the conclusion of Y ∧ X is reached and the

544forward procedure stops. Otherwise, the procedure will move forward to sequence
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545 F2, which examines the relative likelihood of the contemporaneous relationship

546 versus the unidirectional relationship. Notice that sequence F2 is identical to

547 sequence B2, where one of the four possible outcomes, E5, E6, E7, and E8, will

548 emerge. Using the same argument on sequence B2, the outcomes of E5 and E6 lead

549 to tests (g) and (h), respectively. A conclusion from one of the four possible

550 unidirectional relationships can be reached as a result and the forward procedure

551 stops. The outcome of E7 implies Y $ X and stops the forward procedure. How-

552 ever, the outcome of E8, which rules out the case of a contemporaneous relation-

553 ship, leads the forward procedure to sequence F3, which corresponds to sequence

554 B1 in the backward procedure. Tests (a) and (b) may generate one of the four

555 possible outcomes, E1, E2, E3, and E4. Similar to sequence B1 in the backward

556 procedure, the outcomes of E1 and E2 lead to tests (g) and (h), respectively. One of

557 the four unidirectional relationships will be detected as a result and the procedure

558 stops. The outcome of E4 implies a possible feedback relationship, and a further

559 study, test (i), is needed to identify its nature. When H�
5 is rejected in test (i), we

560 conclude Y , X; otherwise, we conclude Y <,> X. The outcome E3 implies that

561 Y may help to predict X and X may help to predict Y, but the nature of this dynamic

562 relationship is not clear. Therefore, test (f) is needed. When H2 is not rejected in test

563 (f), the conclusion Y $ X is reached and the procedure stops. If H2 is rejected in test

564 (f), the procedure moves to test (i) to determine the nature of the feedback

565 relationship. Consequently, either Y , X or Y <,> X is shown to exist.

566 In practice, the model(s) for the time series under study is unknown. However,

567 the order of the VARMA model for the series can be determined using the model

568 identification procedure discussed. The test procedures are rather robust with

569 respect to the selected model as long as the order of the model is generally correct.

570 Corresponding to each hypothesis, the parameters of the constrained model can be

571 estimated using the maximum likelihood estimation method. The likelihood ratio

572 statistic is then calculated for each pair of hypotheses:

LRðHi vs: HjÞ þ lðHiÞ � lðHjÞ; (5.33)

573 where l(Hi) ¼ �2* (log of the maximum likelihood value under Hi). The above

574 likelihood ratio statistic follows a w2-distribution with n degrees of freedom where n
575 in each test is the difference between the number of estimated parameters under the

576 null (the more restrictive one) and the alternative (the less restrictive one)

577 hypotheses. A chi-square table can then be used to determine the significance of

578 the test statistic for the tested hypotheses.

579 In each procedure, an a significance level will be used in conducting all pair-

580 wise tests. Note that this a level is not the Type I error probability for the overall

581 performance of the procedures. It serves only as a cutoff point in a sequential

582 decision procedure. The smaller the a, the higher is the probability that the more

583 restrictive hypothesis will not be rejected. Hence, taking a smaller a is equivalent to

122 5 Transfer Function Modeling and Granger Causality Testing



584favoring the more restrictive hypotheses (i.e., simpler relationships), and taking a

585larger a is equivalent to favoring the more complicated relationships.

586The above three statistical methods investigate different aspects of a multivariate

587time series structure. The Sims test detects the dynamic relationship from the

588reduced autoregressive form, and the VARMA test examines the reduced form of

589a VARMA structure. The implementation of the Sims test is the easiest of the three

590and requires the least subjective judgement. While the literature provides a few

591observations on the relative performance of these three tests, Granger and Newbold

592(1974) pointed out that the Sims test has a tendency to generate spurious

593correlations. The Chen and Lee (1990) test begins with a traditional transfer

594function model estimate shown in Tables 5.3–5.5.

595We identify two outliers in the initial merger transfer function model using LEI

596as the input. The estimation of the Innovational Outlier (IO, a one-time event in the

597time series) and Level Shift (LS, a permanent change in the time series) outliers

598reduces the residual standard deviations by about 20 %.8

599LEI and stock prices are statistically associated with mergers in the Chen and

600Lee (1990) SCA analysis.

601One sees the one and two quarter lags in the LEI in the merger transfer function

model equation estimate, shown in Table 5.4

t3:1Table 5.3 Mergers, LEI, and stock price causality testing: Chen and Lee (1990) test

t3:2

8 The SCA outlier estimation using stock prices as the input series is:
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One sees the one and two quarter lags in the LEI with estimated outliers in

Table 5.5

t4:1 Table 5.4 Summary for univariate time series model—TFM1

(continued)
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t4:3Table 5.4 (continued)

t4:2
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Let usmove to a final Chen and Lee (1990)mergermodel estimation. The final form

of themergers andLEI analysiswith theCCCFandCCManalysis is shown inTable5.6.

t5:1 Table 5.5 Summary for univariate time series model—TFM1

t5:2
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t6:1Table 5.6 Summary for univariate time series model—TFM1

(continued)



Table 5.6 (continued)

(continued)



Table 5.6 (continued)

(continued)



Table 5.6 (continued)

(continued)
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Table 5.6 (continued)

(continued)
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Table 5.6 (continued)

(continued)
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Table 5.6 (continued)

(continued)
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Table 5.6 (continued)

(continued)
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Table 5.6 (continued)

(continued)
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Table 5.6 (continued)

(continued)
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Table 5.6 (continued)

(continued)



Table 5.6 (continued)

t6:2



The Chen and Lee (1990) test finds that LEI strongly cause mergers during the

1992–2011 period. Moreover, the Chen and Lee (1990) test finds that stock prices

cause mergers during the 1992–2011 period.9

Money Supply and Stock Prices, 1967–2011

We examine the causal relationship between the money supply (M1P) and stock

prices, as measured by the S&P 500 during the 1967.01–2011.04 period. Thomakos

and Guerard (2004) and Ashley (2004) AU7found that the money supply passed the

AGS (1980) causality test and the Ashley post-sample criteria test (2004). We

obtain M1P and S&P 500 monthly data from the St. Louis Federal Reserve

economic database (FRED).10 Both series have a difference in the logarithmic

process; i.e., the series are dlog-transformed. We use SCA and the Chen and Lee

(1990) test for the money supply and stock returns series. There is a four-month lag

in the (positive) effect of the money supply on stock prices (and returns), see

Table 5.7.

t7:1Table 5.7 The money supply and stock prices, 1967–2011

(continued)

9 Had one modeled stock prices and mergers for the 1979–2011 period, one finds only a contem-

poraneous relationship and no strong causality findings.
10We use M1P, a variation on M1, rather than M3, that was used in the earlier studies because M3

was discontinued in the FRED database.
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Table 5.7 (continued)

t7:2
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t8:1Table 5.8 Summary for univariate time series model—TFM1

t8:2



We find significant outliers in the money supply and stock returns series

estimates, see Table 5.8.

The estimation of outliers reduces the residual standard error by approximately

20 %.

However, the Chen and Lee (1990) test does not report that the money supply

causes stock prices,

RESULT BASED ON THE BACKWARD PROCEDURE ( Y:SP500, X: MSIM1P)
SP500 ¼>> MSIM1P (Y STRONGLY CAUSES X)
RESULT BASED ON THE FORWARD PROCEDURE ( Y:SP500, X: MSIM1P)
SP500 ^ MSIM1P (Y IS INDEPENDENT OF X)
but rather that stock prices (returns) cause the money supply and that stock prices

are independent of the money supply.

In this chapter, we fit univariate and bivariate time series models in the tradition

of Box and Jenkins (1976) and Granger and Newbold (1977) and apply traditional

Granger causality testing following the Ashley et al. (1980) methodology and the

Vector Autoregressive Models (VAR) and Chen and Lee (1990) VARMA causality

test. We test two series for causality: (1) stock prices and mergers and (2) the money

supply and stock prices. We find mixed results on Granger causality testing models.
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1Chapter 6

2A Case Study of Portfolio Construction

3Using the USER Data and the Barra

4Aegis System

5In this chapter, we estimate a set of monthly regression models to create monthly

6expected returns and demonstrate the effectiveness of the Barra Aegis system. The

7Aegis system creates and tests investment management strategies, producing

8portfolios and attributing portfolio returns according to the Barra multifactor risk

9model. We find support with the Barra Aegis for the composite modeling, the

10United States Expected Returns (USER), developed and estimated in Chap. 4,

11using fundamental, expectations, and momentum-based data for the US equities

12during the December 1979–December 2009 period. To measure risk, one can vary

13the period of volatility calculation, such as using 5 years of monthly data in

14calculating the covariance matrix, as was done in Bloch et al. (1993), or 1 year of

15daily returns to calculate a covariance matrix, as was done in Guerard et al. (1993), AU1

16or 2–5 years of data to calculate factor returns as in the Barra system, discussed in

17Menchero et al. (2010). The Capital Asset Pricing Model, the CAPM, holds that the

18return to a security is a function of the security beta:

Rjt ¼ RF þ bj EðRMtÞ � RF½ � þ ejt; (6.1)

J.B. Guerard, Jr., Introduction to Financial Forecasting in Investment Analysis,
DOI 10.1007/978-1-4614-5239-3_6, # Springer Science+Business Media New York 2013
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19 where Rjt is expected security return at time t; E (RMt), expected return on the

20 market at time t; RF, risk-free rate; bj, security beta, a random regression coefficient;

21 and ejt, randomly distributed error term.1

22 Let us estimate beta coefficients to be used in the CAPM to determine the rate of

23 return on equity. One can fit a regression line of monthly holding period returns

24 (HPRs) against the excess returns of an index such as the value-weighted Center for

25 Research in Security Prices (CRSP) index, which is an index of all publicly traded

26 stocks. Most stock betas are estimated using 5 years of monthly data, some sixty

27 observations, although one can use almost any number of observations.2 One

28 generally needs at least thirty observations for normality of residuals to occur.

29 One can use the Standard & Poor’s 500 Index, or the Dow Jones Industrial Index

30 (DJIA), or many other stock indexes.

31 Empirical tests of the CAPM often resulted in unsatisfactory results. That is, the

32 average estimated market risk premium was too small, relative to the theoretical

33 market risk premium and the average estimated risk-free rate exceeded the known

34 risk-free rate. Thus low-beta stocks appeared to earn more than was expected and

35 high-beta stocks appeared to earn less than was expected (Black et al. (1972)). The

36 equity world appeared more risk-neutral than one would have expected during the

37 1931–1965 period. There could be many issues with estimating betas using ordinary

38 least squares. Roll (1969, 1977) and Sharpe (1971) identified and tested several

39 issues with beta estimations. Bill Sharpe estimated characteristic lines, the line of

40 stock or mutual fund return versus the market return, using ordinary least squares

41 (OLS) and the mean absolute deviation (MAD) for the 30 stocks of the Dow Jones

42 Industrial Average stocks versus the Standard and Poor’s 425 Index (S&P 425) for

43 the 1965–1970 period and 30 randomly selected mutual funds over the 1964–1970

44 period versus the S&P 425. Sharpe found little difference in the OLS and MAD

45 betas, and concluded that the MAD estimation gains may be “relatively modest.”

1 The CAPM beta, its measure of systematic risk, from the Capital Market Line equilibrium

condition, in an alternative formulation:

bj ¼
CovðRj;RMÞ
VarðRMÞ (6.2)

EðRjÞ ¼ RF þ EðRMÞ � RF

s2M

� �
CovðRj;RMÞ

¼ RF þ EðRMÞ � RF½ �CovðRj,RMÞ
VarðRMÞ

EðRjÞ ¼ RF þ EðRMÞ � RF½ �bj: (6.3)

Equation (6.3) defines the Security Market Line, (SML), which describes the linear relationship

between the security’s return and its systematic risk, as measured by beta.
2 Standard &Poor’s, The Stock Market Encyclopedia, uses 5 years on monthly data to estimate beta

coefficients.

AU1,2
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46The difficulty of measuring beta and its corresponding SML gave rise to extra-

47market measures of risk, found in the work of King (1966), Farrell (1973),

48Rosenberg (1973, 1976, 1979), Stone (1974, 2002), Ross (1976), Ross and Roll

49(1980), Blin and Bender (1995), and Blin et al. (1998) AU4and culminated in the

50creation of the MSCI Barra and Sungard APT portfolio creation and management

51systems. We highlight the Barra Aegis system in this analysis. The Barra risk model

52was developed in the series of studies by Rosenberg and completely discussed in

53Rudd and Clasing (1982) and Grinhold and Kahn (2000). The extra-market risk

54measures are a seemingly endless source of discussion, debate, and often frustration

55among investment managers. Farrell (1974, 1997) AU5

AU6

estimated a four-“factor” extra-

56market model. Farrell took an initial universe of 100 stocks in 1974 (due to

57computer limitations), and ran market models for each stock to estimate betas and

58residuals from the market model:

Rjt ¼ aj þ bjRMt
þ ej (6.4)

ejt ¼ Rjt � âj � b̂jRMT
: (6.5)

59The residuals of (6.5) should be independent variables, if one factor (the market)

60is sufficient for modeling security returns. That is, after removing the market impact

61by estimating a beta, Farrell hypothesized that the residual of IBM should be

62independent of Dow, Merck, or Dominion Resources. The residuals should be

63independent, of course, with the market, in theory. The expected returns should

64be priced by only the beta. Farrell (1974) examined the correlations among the

65security residuals of (6.9) and found that the residuals of IBM and Merck were

66highly correlated, but the residuals of IBM and D (then Virginia Electric & Power)

67were not correlated. Farrell used a statistical technique known as Cluster Analysis

68to create clusters, or groups, of securities, having highly correlated market model

69residuals. Farrell found four clusters of securities based on his extra-market covari-

70ance. The clusters contained securities with highly correlated residuals that were

71uncorrelated with residuals of securities in the other clusters. Farrell referred to his

72clusters as “Growth Stocks” (electronics, office equipment, drug, hospital supply

73firms, and firms with above-average earnings growth), “Cyclical Stocks” (Metals,

74machinery, building supplies, general industrial firms, and other companies with

75above-average exposure to the business cycle), “Stable Stocks” (banks, utilities,

76retailers, and firms with below-average exposure to the business cycle), and

77“Energy Stocks” (coal, crude oil, and domestic and international oil firms).

78Bernell Stone (1974) AU7developed a two-factor index model which modeled equity

79returns as a function of an equity index and long-term debt returns. Both equity and

80debt returns had significant betas. In recent years, Stone and Guerard (2010a, b)

81have developed a portfolio algorithm to generate portfolios that have similar stock

82betas (systematic risk), market capitalizations, dividend yield, and sales growth

83cross sections, such that one can access the excess returns of the analysts’ forecasts,

84forecast revisions, and breadth model, as one moves from low (least preferred) to

85high (most preferred) securities with regard to his or her portfolio construction
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86 variable (i.e., CTEF or a composite model of value and analysts’ forecasting

87 factors). In the Stone and Guerard (2010a) work, the ranking on forecasted return

88 and grouping into fractile portfolios produce a set of portfolios ordered on the basis

89 of predicted return score. This return cross section will almost certainly have a wide

90 range of forecasted return values. However, each portfolio in the cross section will

91 almost never have the same average values as that of the control variables. To

92 produce a cross-sectional match on any of the control variables, we must reassign

93 stocks. For instance, if we were trying to make each portfolio in the cross section

94 that has the same average beta value, we could move a stock with an above-average

95 beta value into a portfolio whose average beta value is below the population AU8aver-

96 age. At the same time, we could shift a stock with a below-average beta value into

97 the above-average portfolio from the below-average portfolio. The reassignment

98 problem can be formulated as a mathematical assignment program (MAP). Using

99 the MAP produces a cross-sectional match on beta or any other risk control

100 variable. All (fractile) portfolios should have explanatory controls equal to their

101 population average value.

102 In 1976, Ross published his “Arbitrage Theory of Capital Asset Pricing,” which

103 held that security returns were a function of several (4–5) economic factors. Ross

104 and Roll (1980) empirically substantiated the need for 4–5 factors to describe the

105 return generating process. In 1986, Chen, Ross, and Roll (CRR) developed an

106 estimated multifactor security return model based on

R ¼ aþ bMP MPþ bDEI DEIþ bUI UIþ bUPR UPRþ bUTS UTS tet; (6.6)

107 where MP is monthly growth rate of industrial production; DEI, change in expected

108 inflation; UI, unexpected inflation; UPR, risk premium; and UTS, term structure of

109 interest rates.

110 CRR defined unexpected inflation as the monthly (first) differences of the

111 Consumer Price Index (CIP) less the expected inflation AU9rate. The risk premia variable

112 is the “Baa and under” bond return at time and less the long-term government bond

113 return. The term structure variable is the long-term government bond return less the

114 Treasury bill rates, known at time t � 1, and applied to time t. When CRR applied

115 their five-factor model in conjunction with the value-weighted index betas, during

116 the 1958–1984 period, the index betas are not statistically significant whereas the

117 economic variables are statistically significant. The Stone, Farrell, and CRR multi-

118 factor model used 4–5 factors to describe equity security risk. The models used

119 different statistical approaches and economic models to control for risk.

120 The BARRA Model: The Primary Institutional Risk Model

121 As discussed previously, the most frequent approach for the prediction of risk is to

122 use historical price behavior in the estimation of beta. Beta was defined as the

123 sensitivity of the expected excess rate of return on the stock to the expected excess

148 6 A Case Study of Portfolio Construction Using the USER Data



124rate of return on the market portfolio. Unfortunately, the word expected has been

125used, and no good records of aggregate expectations exist. Thus, a major assump-

126tion has to be made to enable average (realized) rates of return to be used in place of

127expected rates of return, which, in turn, permits us to use the slope of regression line

128(estimated from realized data) to form the basis for a prediction of beta.

129If this assumption, which essentially states that the future is going to be similar to

130the “average past,” is made, then the estimation of historical beta proceeds as

131follows. Choose a suitable number of periods for which the excess returns of the

132security and market portfolio proxy are known. There is a subtle trade-off here.

133When more data points are used, the accuracy of the estimation procedure is

134improved, provided the relationship being estimated does not change. Usually the

135relationship does change; therefore, a small number of most recent data points is

136preferred so that dated information will not obscure the current relationship. It is

137usually accepted that a happy medium is achieved by using 60 monthly returns.3

138The security series is then regressed against the market portfolio series. This

139provides an estimate of beta (which is equivalent to the slope of the characteristic

140line) and the residual variance.

141Menchero et al. (2010) use the CAPM framework and decompose the return of

142any asset into a systematic component, correlated with the market, and a residual

143uncorrelated with the market. The CAPM predicts that the residual return is zero.

144The predicted value of the residual does not preclude correlations among residual

145returns, because there may be multiple sources of equity return co-movement, even

146if there is a single source of expected return. It can be shown that if the regression

147equation is properly specified and certain other conditions are fulfilled, then the beta

148obtained is an optimal estimate (actually, minimum-variance, AU10unbiased) of the true

149historical beta averaged over past periods. However, this does not imply that the

150historical beta is a good predictor of future beta. For instance, one defect is that

151random events impacting the firm in the past may have coincided with market

152movements purely by chance, causing the estimated value to differ from the true

153value. Thus, the beta obtained by this method is an estimate of the true historical

154beta obscured by measurement error. Rudd and Clasing (1982) discussed beta

155prediction with respect to the use of historic price information. Three possible

156prediction methods for beta were suggested. These are the following:

1571. Naı̈ve: b̂j ¼ 1:0 for all securities (i.e., every security has the average beta).

1582. Historical: b̂j ¼ Hb̂j , the historical beta obtained as the coefficient forms an

159ordinary least squares regression.

3We have glossed over a number of econometric subtleties in these few sentences. Those readers

who wish to learn more about these estimation difficulties are directed toward the following

articles and the references contained there: Merton Miller and Myron Scholes, “Rates of Return in

Relation to Risk: A Reexamination of Recent Findings,” in Studies in The Theory of Capital
Markets, ed. Michael Jensen (New York: Praeger Publishers, 1972), pp. 47–48.
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160 3. Bayesian-adjusted beta: b̂j ¼ 1:0þ BAðHb̂j � 1Þ, where the historical betas are
161 adjusted toward the mean value of 1.0.

162 In each case, the prediction of residual risk is obtained by subtracting the

163
systematic variance b̂2j VM

� �
from the total variance of the security. The residual

164 variance is obtained directly from the regression.

165 However, relying simply upon historical price data is unduly restricting in that

166 there are excellent sources of information which may help in improving the

167 prediction of risk. For instance, most analysts would agree that fundamental

168 information is useful in understanding a company’s prospects. The fundamental
169 predictions of risk, which were pioneered principally by Professor Barr Rosenberg

170 and Vinay Marathe of the University of California at Berkeley, became the foun-

171 dation of the Barra system.

172 The historical beta estimate will be an unbiased predictor of the future value of

173 beta, provided that the expected change between the true value of beta averaged

174 over the past periods and its value in the future is zero. If this expected change is

175 not zero, then the historical beta estimate will be misleading (biased). Thus, if

176 historical betas are used as a prediction of beta, there is an implicit assumption that

177 the future will be similar to the past. Is this assumption reasonable? The answer is,

178 probably not. The investment environment changes so rapidly that it would appear

179 imprudent to use averages of historical (5-year) price data as predictions of the

180 future.

181 Barr Rosenberg and Walt McKibben (1973) AU11estimated the determinants of

182 security betas and standard deviations. This estimation formed the basis of the

183 Rosenberg extra-market component study (1974), in which security-specific risk

184 could be modeled as a function of financial descriptors, or known financial

185 characteristics of the firm. Rosenberg and McKibben found that the financial

186 characteristics that were statistically associated with beta during the 1954–1970

187 period were:

188 1. Latest annual proportional change in earnings per share;

189 2. Liquidity, as measured by the quick ratio;

190 3. Leverage, as measured by the senior debt-to-total assets ratio;

191 4. Growth, as measured by the 5-year growth in earnings per share;

192 5. Book-to-Price ratio;

193 6. Historic beta;

194 7. Logarithm of stock price;

195 8. Standard deviation of earnings per share growth;

196 9. Gross plant per dollar of total assets;

197 10. Share turnover.

198 Rosenberg and McKibben used 32 variables and a 578-firm sample to estimate

199 the determinants of betas and standard deviations. For betas, Rosenberg and

200 McKibben found that the positive and statistically significant determinants of

201 beta were the standard deviation of eps growth, share turnover, the price-to-book
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202multiple, and the historic beta.4 Rosenberg et al. (1975), Rosenberg and Marathe

203(1979), Rudd and Rosenberg (1979, 1980), and Rudd and Clasing (1982) expanded

204upon the initial AU12Rosenberg MFM framework.

205In 1975, Barr Rosenberg and his associates introduced the BARRA US Equity

206Model, often denoted USE1. We spend a great deal of time on the BARRA USE1

207and USE3 models because 70 of the 100 largest investment managers use the

4When an analyst forms a judgment on the likely performance of a company, many sources of

information can be synthesized. For instance, an indication of future risk can be found in the

balance sheet and the income statement; an idea as to the growth of the company can be found

from trends in variables measuring the company’s position; the normal business risk of the

company can be determined by the historical variability of the income statement; and so on. The

approach that Rosenberg and Marathe take is conceptually similar to such an analysis since they

attempt to include all sources of relevant information. This set of data includes historical,

technical, and fundamental accounting data. The resulting information is then used to produce,

by regression methods, the fundamental predictions of beta, specific risk, and the exposure to the

common factors.

The fundamental prediction method of Barra starts by describing the company, see Rudd and

Clasing (1982). The Barra USE1 Model estimated “descriptors,” which are ratios that describe the

fundamental condition of the company. These descriptors are grouped into six categories to

indicate distinct sources of risk. In each case, the category is named so that a higher value is

indicative of greater risk.

1. Market variability. This category is designed to capture the company as perceived by the

market. If the market were completely efficient, then all information on the state of the

company would be reflected in the stock price. Here the historical prices and other market

variables are used in an attempt to reconstruct the state of the company. The descriptors include

historical measures of beta and residual risk, nonlinear functions of them, and various liquidity

measures.

2. Earnings variability. This category refers to the unpredictable variation in earnings over time,

so descriptors such as the variability of earnings per share and the variability of cash flow are

included.

3. Low valuation and unsuccess. How successful has the company been, and how is it valued by

the market? If investors are optimistic about future prospects and the company has been

successful in the past (measured by a low book-to-price ratio and growth in per share earnings),

then the implication is that the firm is sound and that future risk is likely to be lower.

Conversely, an unsuccessful and lowly valued company is more risky.

4. Immaturity and smallness. A small, young firm is likely to be more risky than a large, mature

firm. This group of descriptors attempts to capture this difference.

5. Growth orientation. To the extent that a company attempts to provide returns to stockholders by

an aggressive growth strategy requiring the initiation of new projects with uncertain cash flows

rather than the more stable cash flows of existing operations, the company is likely to be more

risky. Thus, the growth in total assets, payout and dividend policy, and earnings/price ratio is

used to capture the growth characteristics of the company.

6. Financial risk. The more highly levered the financial structure, the greater is the risk to

common stockholders. This risk is captured by measures of leverage and debt to total assets.

Finally industry in which the company operates is another important source of information.

Certain industries, simply because of the nature of their business, are exposed to greater (or lesser)

levels of risk (e.g., compare airlines versus gold stocks). Rosenberg and Marathe used indicator

(dummy) variables for 39 industry groups as the method of introducing industry effects.
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208 BARRA USE3 Model.5 The BARRA USE1 Model predicted risk, which required

209 the evaluation of the firm’s response to economic events, which were measured by

210 the company’s fundamentals. Let us review the Barra prediction rules for the

211 systematic risk and residual risk are expressed in terms of the descriptors, as

212 discussed in Rudd and Clasing (1982). There are three major steps. First, for the

213 time period during which the model is to be fitted, obtain common stock returns and

214 company annual reports (for instance, from the COMPUSTAT database).6 In order

215 to make comparisons across firms meaningful, the descriptors must be normalized

216 so that there is a common origin and unit of measurement, Table 6.1 AU13.

Table 6.1 Components of the risk indices

1. Index of market variability

Historical beta estimate

Historical sigma estimate

Share turnover, quarterly

Share turnover, 12 months

Share turnover, 5 years

Trading volume/variance

Common stock price (ln)

Historical alpha estimate

Cumulative range, 1 year

2. Index of earnings variability

Variance of earnings

Extraordinary items

Variance of cash flow

Earnings covariability

Earnings/price covariability

3. Index of low valuation and unsuccess

Growth in earnings/share

Recent earnings change

Relative strength

Indicator of small earnings/price ratio

Book/price ratio

Tax/earnings, 5 years

Dividend cuts, 5 years

Return on equity, 5 years

4. Index of immaturity and smallness

Total assets (log)

Market capitalization (log)

Market capitalization

Net plant/gross plant

Net plant/common equity

(continued)

5 According to BARRA online advertisements.
6 The COMPUSTAT database is one of the databases collected by Investors Management

Sciences, Inc., a subsidiary of Standard & Poor’s Corporation.
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217The listing of the USE1 risk index components, as was reported in Rudd and

218Clasing (1982), was very informative. One wonders as to the weighting of the risk

219index components. The reader can find the variable weights in the risk index

220components in Rosenberg and Marathe (1976, see p 20) AU14. The Index of Market

221Variability was primarily determined by the historic Beta and the historic standard

222deviation of residual risk. The Index of Earnings Variability was primarily deter-

223mined by the coefficient of variation of annual earnings per share in the last 5 years

224and the typical proportion of earnings that are extraordinary items. The Index of

225Unsuccess and Low Valuation was primarily determined by the measure of propor-

226tional change in adjusted earnings per share in the past two fiscal years and the

227“relative strength,” the logarithmic rate of return, during the last year. The Index of

228Immaturity and Smallness was primarily determined by the ratio of gross plant to

229total equity and the logarithm of total assets. The Index of Growth Orientation was

230primarily determined by the normal value of the dividend yield during the last 5

231years and the 5-year asset growth rate. The Index of Financial Risk was primarily

232determined by the total debt-to-assets ratio and the liquidity of the current financial

233position. The equations that formed the Index weights in USE1 were proprietary

234and undisclosed in USE2, USE3, and USE4.

235In the Barra risk model, data is normalized. The normalization takes the follow-

236ing form. First, the “raw” descriptor Values for each company are computed.

237Next, the capitalization-weighted value of each descriptor for all the securities in

Table 6.1 (continued)

Inflation adjusted plant/equity

Trading recency

Indicator of earnings history

5. Index of growth orientation

Payout, last 5 years

Current yield

Yield, last 5 years

Indicator of zero yield

Growth in total assets

Capital structure change

Earnings/price ratio

Earnings/price, normalized

Typical earnings/price ratio, 5 years

6. Index of financial risk

Leverage at book

Leverage at market

Debt/assets

Uncovered fixed charges

Cash flow/current liabilities

Liquid assets/current liabilities

Potential dilution

Price-deflated earnings adjustment

Tax-adjusted monetary debt
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238 the S&P 500 is computed and then subtracted from each raw descriptor. The

239 transformed descriptors now have the property that the capitalization-weighted

240 value for the S&P 500 stocks is zero. This step unambiguously fixes the “origin”

241 for measurement; however, the unit of “length” is still arbitrary. To standardize the

242 length, the standard deviation of each descriptor is calculated within a universe of

243 large companies (defined as having a capitalization of $50 million or more). The

244 descriptor is now further transformed by setting the value +1 to be one standard

245 deviation above the S&P 500 mean (i.e., one unit of length corresponds to one

246 standard deviation). Rudd and Clasing (1982) write

ND ¼ ðRD� RD½S&P�Þ STDEV½RD�;= (6.7)

247 where ND is the normalized descriptor value; RD the raw descriptor value as

248 computer from the data; RD[S&P] the raw descriptor value for the (capitalization-

249 weighted) S&P 500; and STDEV[RD] the standard deviation of the raw descriptor

250 value calculated from the universe of large companies.

251 At this stage each company is indentified by a series of descriptors which indicate

252 its fundamental position. If a descriptor value is zero, then the company is “typical”

253 of the S&P 500 (for this characteristic) because the S&P 500 and the company both

254 have the same raw value. Conversely, if the descriptor value is nonzero, then the

255 company is atypical of the S&P 500, and this information may he used to adjust

256 the prior prediction in order to obtain a better posterior prediction of risk.

257 In the second step, one groups the monthly data by quarters, and assemble the

258 descriptors of each company as they would have appeared at the beginning of

259 the quarter. The prediction rule is then fitted by linear regression which relates each

260 monthly stock return in that quarter to the previously computed descriptors. These

261 adjustments are combined as follows. Initially, in the absence of any fundamental

262 information, the beta is set equal to its historical value. Then each descriptor is

263 examined in turn, and if it is atypical, the corresponding adjustment to beta is made.

264 For example, if two companies with the same historical beta are identical except

265 that they have very different capitalizations, then one adjusts the risk of the large-

266 capitalization company downward, relative to that of the small-capitalization com-

267 pany, because large companies typically have less risk than small companies. The

268 fundamental knowledge of additional information improves the prediction of risk.

269 The econometric prediction rule is similar; the prediction is obtained by adding the

270 adjustments for all descriptors, in addition to the industry effect, to the historical

271 beta estimate. The prediction rule for the beta of security i, in a given month, can be

272 written as follows:

b̂i ¼ b̂o þ b̂ldli þ . . .þ b̂JdJi; (6.8)

273 where b̂i is the predicted beta; b̂j the estimated response coefficients in the prediction

274 rule; dji the normalized descriptor values for security i; and J the total number of

275 descriptors.
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276In this prediction rule we can think of the first descriptor, d1i, as the historical

277beta,Hb̂. Thus, if only the first descriptor is used, the prediction rule is similar to the

278specification of the Bayesian adjustment, (6.8). In this case, the linear regression

279provides estimates for b̂o and b̂1, which indicate the optimal adjustment to historical

280beta for predictive purposes. Other descriptors in addition to historical beta are

281employed and appear in the prediction rule as d2i. In other words, the fundamental

282predictions are direct generalizations of the “price only” predictions.

283If the company is completely typical of market (i.e., the descriptors other than

284historical beta are all zero), then there is no further adjustment to the Bayesian-

285adjusted historical beta. This is intuitive; if the company is in no sense “special,”

286then there is no reason to believe that the averaged true beta in the past will not

287equal the true beta in the future. However, if the company is atypical, then not all

288the descriptors (other than historical beta) will be zero. For simplicity, suppose that

289only the first (historical beta) and second descriptors are nonzero, where the latter

290has a value of one (i.e., this company is one standard deviation from the S&P 500

291value). The prediction rule, (6.8), shows that the predicted beta is found by adding

292the adjustment b̂2 to the Bayesian-adjusted historical beta. In general, the total

293adjustment is the weighted sum of the coefficients in the prediction rule, where the

294weights are the normalized descriptor values which indicate the company’s degree

295of deviance from the typical company.

296In the third step, the Barra risk model estimates the company’s exposure to each

297of the common factors and the prediction of the residual risk components. The first

298task is to form summary measures or indices of risk to describe all aspects of the

299company’s investment risk. These are obtained by forming the weighted average of

300the descriptor values in each of the six categories introduced above, where the

301weights are the estimated coefficients from the prediction rule, (6.8), for systematic

302or residual risk. This provides six summary measures of risk, the risk indices, for

303each company. Again, these indices are normalized so that the S&P 500 has a value

304of zero on each index and a value of one corresponds to one standard deviation

305among all companies with capitalization of $50 million or more.

306The prediction of residual risk is now found by performing a regression on the

307cross section of all security residual returns as the dependent variable where the

308independent variables are the risk indices.7 The form of the regression, in a given

309month, is shown in (6.9):

ri � b̂irM ¼ c1RI1i þ . . .þ c6RI6i þ c7IND1i þ . . .þ c45IND39;i þ ui; (6.9)

310where ri is the excess return on security i; b̂i, the predicted beta, from (6.9); and RM,

311the excess return on the market portfolio so that ri � b̂irM is the residual return on

7 See Barr Rosenberg and Vinay Marathe, “Common Factors in Security Returns: Microeconomic

Determinants and Macroeconomic Correlates,” Proceedings of the Seminar on the Analysis of
Security Prices, University of Chicago, May 1976, pp. 61–115 and Rosenberg and Marathe (1979).
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312 security i; RI1i, . . ., RI6i are the six risk indices for security i, IND1i, . . ., IND39,i are

313 the dummy variables for the 39 industry groups; ui is the specific return for security
314 i; and c1, . . ., c45 are the 45 coefficients (factor returns) to be estimated.

315 The result from this cross-sectional regression is the specific return and specific

316 risk on the security, together with the 45 coefficients. These estimated coefficients

317 represent the returns that can be attributed to the factors in the month of the

318 analysis.

319 The entire risk of the stock arises from two sources: the systematic or factor risk

320
b2j Var f½ �
� �

, and the nonfactor risk s2j
� �

, the variance of the residual. In this case,

321 however, the nonfactor risk is completely specific risk since no risk arises from

322 interactions with other stocks. In other words, under these assumptions the single

323 factor, f, is responsible for the only commonality among stock returns; thus,

324 the random return component that is not related to the factor must be specific to

325 the individual stock, j.
326 If we form a portfolio, P, with weights hP1, hP2, . . ., hPN, from N stocks, then the

327 random excess return on the portfolio for a single factor is given by

RP ¼
X

hPjrj ¼
X

hPjbjf þ
X

hPjuj ¼ bPf þ
X

hPjuj; (6.10)

328 where bP ¼P hPjrj. The mean return and variance are

E½rP� ¼ aP þ bPE½f �;

329 where aP ¼P hPjaj, and

Var½rP� ¼ b2jVar½ f � þ
X

h2Ps
2
j ; (6.11)

330 where we have made use of the fact that the security-specific risk is specific, i.e.,
331 independent across stocks and independent of the factor return.

332 The market portfolio is just one particular portfolio. Let the security weights be

333 hM1, hM2, . . ., hMN, and notice that bM ¼P hMjbj. We can set bM to any value, and

334 so we choose to set bM ¼ 1.8 The market return statistics are then

E½rM� ¼ aM þ E½f �

335 and

Var½rM� ¼ Var½f � þ
X

h2Ms
2
j : (6.12)

8 This step is equivalent to defining an origin for measurement.
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336The regression coefficient of an individual stock’s rate of return onto the market,

337or beta, is given by

bj ¼ Cov½rj; rM� Var½rM�=

¼ Cov½bif þ uj; f þ
X

hMkuk� Var½rM�=

¼ bjVar½f � þ hMjs2j
� �

Var½rM�=

¼ bjVar½f � þ hMjs2j
� �

Var½f � þ
X

h2Mj
s2j

� �.
(6.13)

338so that

bP ¼ bPVar½f � þ
X

hMjhPjs2j
� �

Var½f � þ
X

h2Mj
s2j

� �9�
:

339Notice that the regression coefficient on the market and the regression coefficient

340on the factor (i.e., bj and bj, and bP and bP) are close but not identical. The

341difference lies in the last terms in the numerator and denominator in both cases.

342Where a single security is concerned, (6.13), the two sensitivities can only be equal

343when the market portfolio is composed of a single security; however, for a portfo-

344lio, the sensitivities will be close whenever the portfolio and market holdings are

345approximately equal (i.e., whenever
P

hMjhPj is close to
P

h2Mj). In other words,

346for well-diversified portfolios (for instance, the majority of institutional portfolios)

347we may approximate the portfolio beta by its regression coefficient on the factor.

348This approximation is useful for the analysis of residual return. Recall that the

349residual return of an individual portfolio (relative to the market portfolio) is equal to

350the total portfolio excess return on an equal-beta-levered market portfolio. That is,

351the residual return measures the return due to nonmarket strategy:

Residual return ¼ rP � bPrM:

352Thus, the residual variance is given by

w2
P ¼ Var½rP � bPrM�
¼ Var ðbP � bPÞf þ

X
ðhPj � bPhMjÞujÞ

h i
¼ ðbP � bPÞ2Var½f � þ

X
ðhPj � bPhMjÞ2s2j ; (6.14)

353since the nonfactor return, uj, is uncorrelated with the factor return. Now, using the

354approximation that bP ¼ bP, it follows that

w2
P ffi

X
hPj � bPhMj

� �2s2j ¼X d2Pjs
2
j ; (6.15)
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355 where dPj ¼ hPj – bPhMj. In other words, it is the discrepancy between portfolio and

356 the holdings of the (equal-beta-levered) market portfolio that induces residual risk.

357 In this formulation it is correct to write the sensitivity to the market as bj since, by
358 definition, a stock’s beta is the exposure to the market. In addition, the nonmarket

359 return is the expectation plus a random term with zero mean; i.e., nonmarket return

360 is aj + ej, where E[ej] ¼ 0, and aj represents the expected abnormal rate of return, or

361 alpha. That is, according to the stated assumptions of the single-factor model, the

362 random nonmarket return on security j should be uncorrelated with the market

363 return and similar returns on all other securities.

364 The mean excess return and variance for stock j are given by

E½rj� ¼
XK
k¼1

bjkE½fk� þ E½uj�

365 and

Var½rj� ¼
XK
k¼1

XK
l¼1

bjkbjlCov½fk; fl� þ s2j ; (6.16)

366 where Cov[fk, fl] is the covariance between the factors and equals Var [fl] if k ¼ l.
367 This multiple factor model is specified by the security factor loadings, bjk, and the

368 factors, fk.
369 If we now form a portfolio, P, with weights hP1, hP2, . . ., hPN, from N stocks, then

370 the random excess return is given by

rP ¼
XN
j¼1

hPjrj ¼
XN
j¼1

hPj
XK
k¼1

bjkfk þ
XN
j¼1

hPjuj

¼
XK
k¼1

XN
j¼1

hPjbjkfk þ
XN
j¼1

hPjuj

¼
XK
k¼1

bPkfk þ
XN
j¼1

hPjuj; (6.17)

371 where we have written bPk ¼
P

hPjbjk as the portfolio loading onto the kth factor.

372 Since the market portfolio is a portfolio, the random excess return on the market is

373 given by (6.16), with M replacing P; i.e.,

rM ¼
XK
k¼1

bMkfk þ
XN
j¼1

hMjuj:
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374Proceeding as before, the beta of the jth asset is given by

bj ¼ Cov½rj; rm� Var½rM�=

¼
XK
k¼1

XK
l¼1

bjkbMlCov½fk; fl� þ bMjs2j

 !
Var½rM�= : (6.18)

375It would appear that this complex expression is devoid of meaning; however, this

376is not the case. Consider the betas of the factors. In particular, for factor k

bfk ¼ Cov½fk; rM� Var½rM�=

¼
XK
l¼1

bMlCov½fk; fl� Var½rM�=

377and the beta of the specific component of return on the jth asset

buj ¼ Cov½uj; rM�=Var½rM�:
¼ hMjs2j =Var½rM�:

378That is, in the multiple factor model the security beta is a weighted average of

379the factor betas and the beta of the specific return of the security, where the weights

380are simply the factor loadings for the jth security. Notice that the beta of the stock’s
381specific return is nonzero only because the security return is a component of the

382market return since the security is a part of the market. The intuition with which we

383wish to leave readers is that, far from being the primitive parameter in finance, the

384stock beta should be regarded as an average of a stock’s exposures to a large

385number of factors influencing its return.

386Now the residual return, the return due to a nonmarket strategy, on portfolio P is

387rP – bPrM. Hence, the portfolio residual variance, w2
P, is given by

w2
P ¼ Var½rP � bPrM�

¼ Var
XK
k¼1

ðbPk � bPbMkÞfk
( )

þ
XN
j¼1

ðhPj � bPhMjÞuj
( )" #

¼ Var
XK
k¼1

ðgPkfkÞ
" #

þ Var
XN
j¼1

dPjuj

" #
; (6.19)

388where g is the Greek letter gamma and gPk ¼ bPk � bPbMk is the discrepancy in the

389portfolio factor loading and the equal-beta-levered market portfolio factor loading;

390dPj is the discrepancy in the holdings, defined below (6.20), and the last step follows

391because the specific returns are uncorrelated with the factors.
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392 Let the model for beta be given by

bnt ¼ b0 þ b1d1nt þ b2d2nt þ . . .þ bJdJnt (6.20)

393 for all time periods t and securities n, where the b’s are coefficients for the

394 systematic risk prediction rule and the d’s are the J descriptor values for the nth
395 company at time t. Further, let E[ent] ¼ 0 and Cov[ent, rMt] ¼ 0 for all t, and define

396 w2
nt to be the residual variance, i.e., w2

nt ¼ Var½ent�. The model for residual risk is

397 given by

wnt ¼ �wtðs0 þ s1d1nt þ s2d2nt þ . . .þ sJdJntÞ; (6.21)

398 where �wt is the typical cross-sectional residual standard deviation in month t. This
399 prediction rule is rewritten in terms of the mean absolute residual return, vnt, for
400 security n in month t and the typical mean absolute residual return in month t, �vt .
401 Therefore, vnt ¼ E(|ent|) and

vnt ¼ �vtðs0 þ s1d1nt þ s2d2nt þ . . .þ sJdJntÞ: (6.22)

402 The estimate approach proceeds by substituting the beta prediction rule, (6.24),

403 and then performing a “market conditional” regression for beta. The dependent

404 variable is rnt, and the independent variables are djntrMt, so the model is

rnt ¼ aþ b0ðrMtÞ þ b1ðdlntrMTÞ þ . . .þ bJðdJntrMtÞ;

405 which provides preliminary estimates, b̂0; . . . ; b̂j . With these coefficients, the

406 preliminary prediction of residual return is

ênt ¼ rnt � ðb̂0 þ b̂1 d1nt þ . . .þ b̂JdJntÞrMt: (6.23)

407 The next regression is fitted to estimate residual risk. It takes the form

ĵentj ¼ s0ðv̂tÞ þ s1ðd1ntv̂tÞ þ . . .þ sJðdJntv̂tÞ;

408 where

�vt ¼
XN
n¼1

hMnt ĵentj;

409 and hMnt is the proportion of security n in the market portfolio at time t. This
410 regression provides estimates, ŝ0; . . . ; ŝJ .
411 The final step in this part of the analysis is to obtain prediction of systematic and

412 residual risk by repeating these two regressions, but now using generalized least

413 squares in order to correct for the different levels of residual risk across the
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414securities.9 The next task is to decompose the residual return into two components:

415specific return and the common factor return. This is achieved by a cross-sectional

416generalized least squares regression where the dependent variable is the residual

417return in month, t, rnt � b̂ntrMt , and the independent variables are the risk indices

418and industry dummy variables. In this regression, each variable is weighted

419inversely to the predicted residual risk.

420The statistically significant determinants of the security systematic risk became

421the basis of the BARRA E1 Model risk indexes. The domestic BARRA E3 (USE3,

422or sometimes denoted US-E3) model, with some 15 years of research and evolution,

423uses 13 sources of factor, or systematic, exposures. The sources of extra-market

424factor exposures are volatility, momentum, size, size nonlinearity, trading activity,

425growth, earnings yield, value, earnings variation, leverage, currency sensitivity,

426dividend yield, and non-estimation universe. The BARRA USE3 descriptors

427are included in the appendix to this chapter. We use the Barra USE3 Model to

428create portfolios using expected returns for equities in the United States for the

4291980–2009 period.

430Rudd and Clasing (1982) AU15described the development and estimation of USE1.

431The MSCI Barra Model used in this chapter is the USE3 Model. The method of

432combining these descriptors into risk indices is proprietary to BARRA. There are

43313 risk indexes or style factors in the USE3 Model. They are the following:

4341. Volatility is composed of variables including the historic beta, the daily

435standard deviation, the logarithm of the stock price, the range of the stock

436return relative to the risk-free rate, the option pricing model standard deviation,

437and the serial dependence of market model residuals.

4382. Momentum is composed of a cumulative 12-month relative strength variable

439and the historic alpha from the 60-month regression of the security excess

440return on the S&P 500 excess return.

4413. Size is the log of the security market capitalization.

4424. Size Nonlinearity is the cube of the log of the security market capitalization.

4435. Trading Activity is composed of annualized share turnover of the past 5 years,

44412 months, quarter, and month, and the ratio of share turnover to security

445residual variance.

4466. Growth is composed of the growth in total assets, 5-year growth in earnings per

447share, recent earnings growth, dividend payout ratio, change in financial

448leverage, and analyst-predicted earnings growth.

4497. Earnings Yield is composed of consensus analyst-predicted earnings to price

450and the historic earnings-to-price ratios.

4518. Value is measured by the book-to-price ratio.

9 This is the statistically efficient approach, and it requires that each observation be weighted

inversely to its residual variance.
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452 9. Earnings Variability is composed of the coefficient of variation in 5-year

453 earnings, the variability of cash flow, and the variability of analysts’ forecasts

454 of earnings to price.

455 10. Leverage is composed of market and book value leverage, and the senior debt

456 ranking.

457 11. Currency Sensitivity is composed of the relationship between the excess return

458 on the stock and the excess return on the S&P 500 Index. These regression

459 residual returns are regressed against the contemporaneous and lagged returns

460 on a basket of foreign currencies.

461 12. Dividend Yield is the BARRA-predicted dividend yield.

462 13. Non-estimation Universe Indicator is a dummy variable which is set equal to

463 zero if the company is in the BARRA estimation universe and equal to one if

464 the company is outside the BARRA estimation universe.10

465 Stock Selection Modeling

466 This analysis builds upon Bloch et al. (1993) and Guerard et al. (2012). We use the

467 USER model described in Guerard et al. (2012). We refer the reader to these studies

468 for much of the underlying expected returns literature. There aremany approaches to

469 security valuation and the creation of expected returns. The universe for all analysis

470 consists of all securities onWharton Research Data Services (WRDS) platform from

471 which we download the CRSP database, I/B/E/S database, and the Compustat

472 database. The I/B/E/S database contains consensus analysts’ earnings per share

473 forecast data and the Compustat database contains fundamental data, i.e., the

474 earnings, book value, cash flow, depreciation, and sales data, used in this analysis

475 for the December 1979–December 2007 time period. The stock selection model

476 estimated in this study, denoted as the United States Expected Returns, USER, is

TRtþ1 ¼ a0 þ a1EPt þ a2BPt þ a3CPt þ a4SPt þ a5REPt þ a6RBPt

þ a7RCPt þ a8RSPt þ a9CTEFt þ a10PMt þ et; (6.24)

477 where EP ¼ [earnings per share]/[price per share] ¼ earnings–price ratio; BP ¼
478 [book value per share]/[price per share] ¼ book–price ratio; CP ¼ [cash flow per

479 share]/[price per share] ¼ cash flow–price ratio; SP ¼ [net sales per share]/[price

480 per share] ¼ sales–price ratio; REP ¼ [current EP ratio]/[average EP ratio over the

10 The Barra US Equity Model (USE4) was introduced in September 2011. The USE4 Model

contains 12 style factors: Beta, Momentum, Size, Earnings Yield, Residual Volatility, Growth,

Dividend Yield, Book-to-Price, Leverage, Liquidity, Nonlinear Size, and Nonlinear Beta.

Menchero and Orr (2012) hold that the sample covariance matrix under-predicts risk and improved

risk forecasts, lower biases, are linked to biases in eigenportfolios (removing eigenportfolio biases).

Better risk-adjusted performance of portfolios results from better covariance adjustments.
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481past 5 years]; RBP ¼ [current BP ratio]/[average BP ratio over the past 5 years];

482RCP ¼ [current CP ratio]/[average CP ratio over the past 5 years]; RSP ¼ [current

483SP ratio]/[average SP ratio over the past 5 years]; CTEF, consensus earnings-per-share

484I/B/E/S forecast, revisions and breadth; PM, Price Momentum; and e, randomly

485distributed error term.

486The USER model is estimated cross-sectionally using a weighted latent root

487regression, WLRR, analysis on (6.24) to identify variables statistically significant at

488the 10% level; uses the normalized coefficients as weights; and averages the

489variable weights over the past 12 months, as described in Chap. 4.

490The information coefficient, IC, is estimated as the slope of a regression line in

491which ranked subsequent returns are expressed as a function of the ranked strategy,

492at a particular point of time. In terms of information coefficients the use of the

493WLRR procedure produces the higher IC for the models during the 1998–2007

494time period, 0.043, versus the equally weighted IC of 0.040, a result consistent with

495the previously noted studies. The IC test of statistical significance can be referred to

496as a Level I test. We have briefly surveyed the academic literature on anomalies and

497find substantial evidence that valuation, earnings expectations, and price momen-

498tum variables are significantly associated with security returns. Further evidence on

499the anomalies is found in Levy (1999).11

11 Haugen and Baker (2010) extended their 1996 study in a recent volume to honor Harry

Markowitz. Haugen and Baker estimate their model using weighted least squares. They estimated

the payoffs to a variety of firms and stock characteristics using a weighted least squares multiple

regression in each month in the period 1963 through 2007. Haugen and Baker find that the most

significant factors are the following:

• Residual Return is last month’s residual stock return unexplained by the market.

• Cash Flow-to-Price is the12-month trailing cash flow per share divided by the current price.

• Earnings-to-Price is the 12-month trailing earnings per share divided by the current price.

• Return on Assets is the12-month trailing total income divided by the most recently reported

total assets.

• Residual Risk is the trailing variance of residual stock return unexplained by market return.

• 12-month Return is the total return for the stock over the trailing twelve months.

• Return on Equity is the12-month trailing earnings per share divided by the most recently

reported book equity.

• Volatility is the 24-month trailing volatility of total stock return.

• Book-to-Price is the most recently reported book value of equity divided by the current market

price.

• Profit Margin is 12-month trailing earnings before interest divided by 12-month trailing sales.

• Three-month return is the total return for the stock over the trailing 3 months.

• Sales-to-Price is 12-month trailing sales per share divided by the market price.

The four measures of cheapness in the USER model: cash-to-price, earnings-to-price, book-to-

price, and sales-to-price, all have significant positive payoffs. Haugen and Baker (2010) find

statistically significant results for the four fundamental factors as did the previously studies we

reviewed. The Haugen and Baker (2010) analysis and results are consistent with those of the Bloch

et al. (1993) model.
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500 Efficient Portfolio Construction Using the Barra Aegis System

501 The USER model can be input into the MSCI Barra Aegis system to create

502 optimized portfolios. The equity factor returns fk in the Barra United States Equity

503 Risk Model, denoted USE3, are estimated by regressing the local excess returns rn
504 against the factor exposures, Xnk,

rn ¼
XKE

k¼1

Xnkfk þ un: (6.25)

505 The USE3 model uses monthly cross-sectional weighted regressions to estimate

506 13 (style) factors associated with extra-market covariances discussed earlier in the

507 chapter. The USER model is our approximation of the expected return, or the

508 forecast of active return, a, of the portfolio. Researchers in industry most often

509 apply the Markowitz (1952) mean/variance framework to active management, as

510 described in Grinold and Kahn (2000) AU16:

U ¼ ah� lo2h2: (6.26)

511 Here a is the forecast of active return (relative to a benchmark which can be cash),

512 o is the active risk, and h is the active holding (the holding relative to the

513 benchmark holding). The risk aversion parameter, l, captures individual investor
514 preference. By varying the tolerance or risk-aversion, l, one can create the efficient
515 Frontier in the Barra model. A similar procedure is used in Bloch et al. (1993). They

516 created efficient portfolios by varying the pick parameter m which measured the

517 risk-aversion. Grinhold and Kahn (2000) use the Information Ratio, IR, as a

518 portfolio construction objective to be maximized, which measures the ratio of

519 residual return to residual risk:

IR � a
o
: (6.27)

520 We construct an Efficient Frontier by varying the risk-aversion levels. The

521 portfolio construction process uses 8% monthly turnover, after the initial portfolio

522 is created, and 125 basis points of transaction costs each way. The USER-optimized

523 portfolios outperform the market, defined here as the Russell 3000 Growth, R3G.

524 The portfolio that maximizes the Geometric Mean (Markowitz 1976) AU17and asset

525 selection occurs at a risk-aversion level of 0.02. The Sharpe Ratio also is

526 maximized at a risk acceptance parameter, RAP, of 0.02 with 109 stocks in the

527 efficient portfolio.12 A decreasing RAP implies that the more aggressive portfolios

12 The regression-weighted USER outperforms the equally weighted model, EQ, in terms of

maximizing the Sharpe Ratio, Information Ratio, Geometric Mean, and the t-value on Barra-

estimated Asset Selection, a result consistent with Bloch et al. (1993), see Guerard et al. (2012).
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528have a greater negative size exposure and implies that the portfolios contain smaller

529capitalized securities. A decreasing risk-aversion level produces a more concentrated

530portfolio, having fewer securities than a higher RAP portfolio, with the securities

531having smaller market capitalizations and higher exposures to momentum and

532growth. The efficient Frontier uses the Barra USE3 Short Model.

533The efficient USER portfolio at a risk-aversion level of 0.02 offers exposure to

534MSCI Barra-estimated momentum, value, and growth exposures, see Table 6.2.

535The reader is hardly surprised with these exposures, given the academic literature

536and stock selection criteria and portfolio construction methodology employed.

537The Guerard et al. (2012) USER analysis used the R3G benchmark, which began

538in December 1996. In this analysis, we can create a USER trade-off curve that

539covers the December 1979–December 2009 period by using the S&P as our

540benchmark. We find that the portfolio characteristics of the longer period analysis,

5411980–2009, are very consistent with the portfolio characteristics of the 1997–2009

542period, see Table 6.3. We find that an RAP of 0.001 is preferred for the 1980–2009

543period.

544The asset selection of the USER model is highly statistically significant and the

545risk index exposures are consistent with the shorter period.13 The USER Efficient

546Frontier for the 1980–2009 period uses the Barra USE3L (United States Equity

547Risk Model–Long) Risk Model. This chart shows the Frontier, reported in Miller

548et al. (2012).
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Chart 1: USER Efficient Frontier, 1980 – 2009

13 The statistical significance of USER in the 1980–2009 period is consistent with Bloch et al.

(1993) and Stone and Guerard (2010b).
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549 The creation of portfolios with a multifactor model and the generation of excess

550 returns will hereby be referred to as a Level II test of portfolio construction.14

551 One could ask if the USER model resulted from a seemingly infinite number of

552 variable tests and permutations. The USER was developed by the author in 1989

553 while at Drexel, Burnham, and Lambert in a consulting project for Continental

554 Bank. Guerard and Miller (1991) AU18presented the initial model and the portfolio

555 excess returns at the Berkeley Program in Finance meeting in Santa Barbara, in

556 September 1990. Guerard worked for Harry Markowitz in the Global Portfolio

557 Research Department, GPRD, at the Daiwa Securities Trust Company. The Conti-

558 nental Bank model was validated and expanded to test its use of 5-year relative

559 variables and four-quarter variable weights lags. The Continental Bank model was

560 validated in Bloch et al. (1993). Markowitz asked if the model could have been “in

561 favor” or “unusually lucky” in its creation and initial implementation. Markowitz

562 and Xu (1994)’s Data Mining Corrections (DMC) proposed three models to evalu-

563 ate the outperformance of the best investment methodology when all of the back

564 test data are available. It is human nature to be skeptical and wonder whether the

565 best outperformance methodology is the result of “Data Mining.” It has been

566 applied routinely in the quantitative researches, for example, Bloch et al. (1993)

567 and Guerard et al. (2010). This chapter follows previous papers doing the Data

568 Mining Correction calculations with the longer data. We refer to the application of

569 the Markowitz and Xu (1993) AU19DMC test as a Level III test.

570 Fundamental factors like dividend-to-price (DP), earnings-to-price (EP) include

571 forecast earnings-to-prices (FEP1, FEP2), book-to-price (BP), cash-to-price ratio

572 (CP), sales-to-price ratio (SP), and none fundamental factors like size (EWC), price

573 momentums (PM71, PM, MQ) and financial analyst forecast earnings revisions

574 (BR1, BR2, RV1, RV2) are not only used in risk modeling, e.g., Rosenberg (1974),

575 but also used in stock selection AU20models. Some researchers combine some simple

576 factors into a composite factor to enhance forecast power like USER and CTEF

577 reported here. With the various expected return forecast model and risk model,

578 researchers can pick a target portfolio from efficient Frontier according to preset

579 investors’ objectives. The excess returns of the portfolios created by the individual

580 variables are denoted by model i. Here is the summary table, Table 6.4, of target

581 portfolios generated by Barra Aegis optimization and portfolio management sys-

582 tem, based on the previously discussed expected return “models,” with the same

583 risk trade-off parameter and the same trading cost.

584 The Markowitz and Xu (1994) DMC models assume that the T period backtest

585 returns were identically and independently distributed (i.i.d.), and it is assumed that

586 future returns are drawn from the same population (also i.i.d.). Let yit be the

587 logarithm of one plus the return for the ith portfolio selection methodology in

588 period t. Then yit is of the form

14 The eight-factor model generated statistically significant predictive power when used in the

portfolio optimization and construction processes of Stone (1970, 1973, 2010a).
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yti ¼ mi þ eit; (6.28)

589where mi is a portfolio selection method effect and eit is a random deviation.

590The random deviation eit has a zero mean and is uncorrelated with mi, i.e.,

EðeitÞ ¼ 0 (6.29)

covðmi; ejtÞ ¼ 0 for all i; j and t: (6.30)

591The “best” linear unbiased estimate of the expected portfolio selection return

592vector m is

m̂ ¼ EðmÞeþ VarðmÞ 1
TCþ VarðmÞI	 
�1 � ð~y� EðmÞeÞ; (6.31)

593where C is the covariance matrix of random effect, i.e.,

C ¼ covðee; ejÞ: (6.32)

594Markowitz and Xu (1994) refer to this as DMC Model III.

595If one assumes that random effect is of form

eit ¼ zt þ �it (6.33)

596where Zt is the period effect it is assumed to be uncorrelated with random effect �.

Table 6.4 US simulated returns: Jan 1980–Dec 2009

Portfolios

Monthly excess return

to S&P 500 in percent t-Statics

USER 0.28 1.72

BR1 0.16 1.29

BR2 0.13 1.12

RV1 0.22 1.48

RV2 0.04 0.32

FEP1 0.02 0.09

FEP2 �0.19 �0.87

CTEF 0.27 2.40

EP 0.09 0.50

BP 0.07 0.33

CP 0.16 0.90

SP 0.34 1.81

DP 0.22 1.21

PM71 0.16 0.84

PM 0.16 0.70

EWC 0.14 0.80

MQ 0.39 2.44

Efficient Portfolio Construction Using the Barra Aegis System 169



597 The best estimate of mi of (6.31) will be simplified to

m̂ ¼ �r þ b ð�ri � �rÞ; (6.34)

598 where

�r ¼
XT
i¼1

ri n= : (6.35)

599 That is the best estimate of means of return of portfolio selection i is not sample

600 mean return, rather it is regressed back to the average return (the grand average).

601 Markowitz and Xu (1994) refer to this as the DMCModel II and is the focus of their

602 paper.

603 Model II can be used to test the null hypothesis that all these portfolios selected

604 by different methods are equally good. If this hypothesis can be rejected, (6.35)

605 gives the best estimate for each selected portfolio. In the above portfolios, the null

606 hypothesis can be rejected with more than 90% confidence because the F-statistic
607 equals 1.5 and b is estimated to be 0.33. Readers are referred to the original paper

608 for detailed calculations.

609 DMC Model III Calculation

610 Instead of assuming that mi are random, Rao (1973) AU21derived a formula for testing the

611 significance of the null hypothesis that all means of these portfolios are the same.

612 The F-statistic is calculated by

F ¼ T � nþ 1

n� 1
� T

T � 1
�

XX
cij � �ri �rj �

PP
cijð�ri þ �rjÞ

	 
2
4
PP

cij

 !
; (6.36)

613 where (cij) is the inverse matrix of the C, the sample (estimated with T-1 D.F.)

614 dispersion matrix as defined in (6.32).

615 When applying formula (6.36) to above portfolios, F ¼ 1.9. Thus, we can reject

616 the hypothesis with 95% confidence. The Bayesian estimate of means are the

617 following:

618 Portfolio �ri � �r Bayesian estimate of �ri � �r Estimate-to-actual ratio

619 S&P500 �0.09 �0.08 0.96

620 USER 0.14 0.12 0.86

621 BR1 0.06 0.05 0.84

622 BR2 0.03 0.02 0.59

623 RV1 0.07 0.09 1.18

624 RV2 �0.10 �0.08 0.82

(continued)
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625

626Portfolio �ri � �r Bayesian estimate of �ri � �r Estimate-to-actual ratio

627FEP1 �0.15 �0.09 0.59

628FEP2 �0.40 �0.32 0.79

629CTEF 0.16 0.16 0.95

630EP �0.05 �0.05 1.05

631BP �0.10 �0.10 1.01

632CP 0.02 0.02 0.82

633SP 0.18 0.17 0.94

634DP 0.09 0.09 0.96

635PM71 �0.02 �0.03 1.26

636PM71 �0.08 �0.09 1.16

637EWC 0.00 �0.01 1.30

638MQ 0.24 0.21 0.91

639DMC provides some statistical answers to the impossible question whether an

640investment selection result is “lucky” or genuinely better. The DMC model III test

641produces a higher test statistic than DMC model II. The Bayesian’s estimates are

642much closer to the simple sample estimates which ignore the other investment’s

643influence. DMC model II is simpler and more plausible.

644Conclusions

645In this case study, we demonstrated the effectiveness of the Barra Aegis system to

646create investment management strategies to produce portfolios and attribute port-

647folio returns to the Barra multifactor risk model during the December

6481979–December 2009 period. We find additional evidence to support the use of

649MSCI Bara multifactor models for portfolio construction and risk control. We

650report two results: (1) a composite model incorporating fundamental data, such as

651earnings, book value, cash flow, and sales, with analysts’ earnings forecast

652revisions and price momentum variables to identify mispriced securities; (2) the

653returns to a multifactor risk-controlled portfolio allow us to reject the null hypothe-

654sis that results are due to data mining. We develop and estimate three levels of

655testing for stock selection and portfolio construction. The use of multifactor risk-

656controlled portfolio returns allows us to reject the null hypothesis that the results are

657due to data mining. The anomalies literature can be applied in real-world portfolio

658construction.
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1Chapter 7

2More Markowitz Efficient Portfolios Featuring

3the USER Data and an Extension to Global Data

4and Investment Universes

5In the previous chapter, we used the Barra Aegis system to create and measure

6portfolios using the USER model. The Barra Model is referred as a fundamental

7risk model because security fundamental data is used to create the risk, or style,

8indexes. In this chapter, we create portfolios using statistically-based risk models in

9the USA and global markets. In this chapter, we address several additional issues

10in portfolio construction and management with Guerard et al. (2012) USER data.

11First, we test the issue of whether Markowitz mean–variance, MV, portfolio

12construction model (1956, 1959, 1987), with a fixed upper bound on security

13weights, dominates the Markowitz enhanced index tracking, EIT, portfolio con-

14struction model (1987) in which security weights are an absolute deviation from

15the security weight in the index. We will refer to the absolute deviation from the

16benchmark weight-enhanced index portfolio construction weight as the equal active

17weighting, or EAW, portfolio construction model. Guerard, Krauklis, and Kumar

18(2012) AU1reported that MV portfolios produced higher Information Ratios and Sharpe

19Ratios than EAW portfolios with weights less than EAW4. A newer approach to the

20systematic risk optimization technique is the Systematic Tracking Error optimiza-

21tion technique reported by Wormald and van der Merwe (2012). We will show the

22effectiveness of the Systematic Tracking Error approach using Global Expected

23Returns (GLER) data over the 2002–2011 period. Finally, we demonstrate using the

24Axioma system and its Alpha Alignment Factor (AAF) analysis reported in Saxena

J.B. Guerard, Jr., Introduction to Financial Forecasting in Investment Analysis,
DOI 10.1007/978-1-4614-5239-3_7, # Springer Science+Business Media New York 2013
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25 and Stubbs (2012) that the AAF is appropriate for USER and GLER Data and that

26 the Axioma Statistical Risk Model dominates the Axioma Fundamental Model.1

27 The security weights are the primary decision variables to be solved in efficient

28 portfolios. Second, we test whether a (traditional) mean–variance optimization

29 technique using the portfolio variance as the relevant risk measure dominates

30 risk-return trade-off curve using the Blin-Bender APT Tracking Error at Risk

31 (TaR) optimization technique which emphasizes systematic, or market, risk. The

32 APT measure of portfolio risk, TaR, estimates the magnitude that the portfolio

33 return may deviate from the benchmark return over 1 year. Specifically, the TaR

34 optimization technique emphasizes systematic risk, rather than total risk, in portfo-

35 lio optimization. A statistically-based principal components analysis (PCA) model

36 is used to estimate and monitor portfolio risk in the Blin and Bender TaR system.

37 To address these issues, we construct efficient portfolios with the USER data,

38 solving for security weights using mean–variance and equal active weighting

39 portfolio construction models for the 1997–2009 period. The MV portfolio con-

40 struction model with fixed security upper bounds performs very well in comparison

41 to EAW portfolio construction models. Mean–variance portfolios with a 4% secu-

42 rity upper bound outperform EAW 1, 2, and 3% strategies. One must use an

43 (at least) EAW 4% strategy to outperform the MV portfolio construction model

44 with a 4%, see Guerard, Krauklis, and Kumar (2012). Index-tracking portfolio

45 construction models are extremely useful if a manager is more concerned with

46 underperforming an index; however, the portfolio manager must be aggressive with

47 the EAW strategy to outperform a traditional mean–variance portfolio construction

48 analysis.

49 We employ mean–variance and TaR optimization techniques to test whether

50 equal active weighting strategies of 1, 2, 3, 4, and 5% (weight deviations from the

51 index, or benchmark, weights) outperform mean–variance strategies using 4 and

52 7% maximum security weights. We will show mean–variance portfolios using the

53 Tracking Error at Risk optimization technique outperform the mean–variance

1 In Chap. 6, we reported that asset selection was statistically significant in the Barra Aegis system.

We report similar results with Sungard APT and Axioma. The author’s belief is that the three

systems can be used to produce highly statistically significant asset selection and very good

portfolio returns and great risk-return statistics. One needs to decide if one wants to set Lambda,

as with Sungard APT, active risk, as with Axioma, and risk acceptance parameters, as with Barra.

In the author’s view, APT, the system that the author has used since 1989 is outstanding and very

adequate. Many (intelligent) people choose active risk (tracking error targets). As long as you are

statistically significant in asset selection with the USER variable (or other proprietary forms) and

are man-enough to implement the model to maximize the Sharpe Ratio and Geometric Mean

(having a negative size exposure and positive momentum, growth, and value exposures), then the

choice of APT and Axioma (and Barra) is analogous to the man who is asked if he prefers blondes,

brunettes, or redheads; one prefers great minds, strong wills, good looks, and the hair color,

preferably natural, is a lesser concern. Not all risk models and optimizers work, as we found out in

the McKinley Capital Horse Race and research seminars of 2009 and 2011. Some systems are

more expensive and their portfolios are dominated by APT, Axioma, and Barra on a risk-return

analysis. We found a decidedly negative correlation between cost and performance.
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54optimization technique during the 1997–2009 period. Both optimization techniques

55produce statistically significant asset selection. We employ the Wormald and van

56der Merwe (2012) Systematic Tracking Error optimization techniques and find

57statistically significant asset selection. In this chapter, we examine two portfolio

58construction models: mean–variance and equal active weighting models; and two

59portfolio optimization techniques: mean–variance and Tracking Error at Risk, and

60Systematic Tracking Error optimization techniques.

61Lambda is a measure of the trade-off between expected returns and risk, as

62measured by the portfolio standard deviation. Generally, the higher the lambda,

63the higher is the expected ratio of expected return to standard deviation. That is,

64creating portfolios with less than optimal lambdas produce portfolio excess returns

65that are not statistically different from zero, whereas appropriate lambdas create

66portfolios that are statistically significant. In the King’s English, benchmark-

67hugging portfolio construction techniques can destroy significant asset selection.

68We assume that the portfolio manager seeks to maximize the combination of

69portfolio Geometric Mean (GM), Sharpe Ratio (ShR), and Information Ratio (IR),

70and asset selection in the Barra attribution analysis. If a portfolio manager has

71models that produce slightly different ordering on these criteria, we maximize the

72Geometric Mean (Latane 1959; VanderWeide 2010) as the ultimate criteria, since it

73is well known that risk is implicit in the Geometric Mean (Markowitz, Chap. 9).

74Constructing Efficient Portfolios

75In the previous chapter, we discussed the Barra Aegis system and its use in creating

76efficient portfolios that produce statistically significant asset selection. Let us step

77back for a moment and review six decades of portfolio construction and manage-

78ment. In the beginning, there was Markowitz (1952). The Markowitz portfolio

79construction approach seeks to identify the efficient frontier, the point at which

80returns are maximized for a given level of risk, or minimize risk for a given level of

81return. The reader is referred to Markowitz (1959) for the seminal discussion of

82portfolio construction and management. The portfolio expected return, E(Rp), is

83calculated by taking the sum of the security weights, w, multiplied by their

84respective expected returns. The portfolio standard deviation is the sum of weighted

85security covariances.

EðRpÞ ¼
XN
i¼1

wiEðRiÞ; (7.1)

s2p ¼
XN
i¼1

XN
j¼1

wiwjsij; (7.2)
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86 where
PN

i¼1 wi ¼ 1 the security weighting summing to one indicates that the

87 portfolios are fully invested.

88 The Markowitz framework measured risk as the portfolio standard deviation, its

89 measure of dispersion, or total risk. One seeks to minimize risk, as measured by the

90 covariance matrix in the Markowitz framework, holding constant expected returns.

91 Elton et al. (2007) write a more modern version of the traditional Markowitz

92 mean–variance problem as a maximization problem:

y ¼ EðRpÞ � RF

s2p
; (7.3)

93 where
PN

i¼1 wi ¼ 1

94 and

s2p ¼
XN
i¼1

w2
i s

2
i þ

XN
i¼1

XN
j¼1

wiwjsij; i 6¼ j

95 and RF is the risk-free rate (90-day treasury bill yield).

96 The optimal portfolio weights are given by:

@y
@wi

¼ 0:

97 As in the initial Markowitz analysis, one minimizes risk by setting the partial

98 derivative of the portfolio risk with respect to the security weights, the portfolio

99 decision variables, to 0.

100 Modern portfolio theory evolved with the introduction of the Capital Asset

101 Pricing Model, the CAPM. Implicit in the development of the CAPM by Sharpe

102 (1964), Lintner (1965), and Mossin (1966) is that the investors are compensated for

103 bearing systematic or market risk, not total risk. Systematic risk is measured by the

104 stock beta. The beta is the slope of the market model in which the stock return is

105 regressed as a function of the market return.2 An investor is not compensated for

106 bearing risk that may be diversified away from the portfolio.

107 The CAPM holds that the return to a security is a function of the security’s beta.

Rjt ¼ RF þ bj½EðRMtÞ � RF� þ ej; (7.5)

2Harry Markowitz often (always) reminds his audiences and readers that he discussed the

possibility of looking at security returns relative to index returns in Chap. 4, footnote 1, page

100, of Portfolio Selection (1959).
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108where Rjt ¼ expected security return at time t; E(RMt) ¼ expected return on the

109market at time t; RF ¼ risk-free rate; bj ¼ security beta; and ej ¼ randomly

110distributed error term.

111An examination of the CAPM beta, its measure of systematic risk, from the

112Capital Market Line equilibrium condition follows.

bj ¼
CovðRj;RMÞ
VarðRMÞ : (7.6)

113The difficulty of measuring beta and its corresponding SML gave rise to extra-

114market measures of risk found in the work of Rosenberg (1974), Rosenberg and

115Marathe (1979), Ross (1976), and Ross and Roll (1980).3 The fundamentally-based

116domestic Barra risk model was developed in the series of studies by Rosenberg and

117thoroughly discussed in Rudd and Clasing (1982) and Grinhold and Kahn (1999),

118and as discussed in the previous chapter.

119The total excess return for a multiple-factor model (MFM) in the Rosenberg

120methodology for security j, at time t, dropping the subscript t for time, may be

121written like this:

EðRjÞ ¼
XK
k¼1

bjk ~f k þ ~ej: (7.7)

122The nonfactor, or asset-specific return on security j, is the residual risk of the

123security after removing the estimated impacts of the K factors. The term f is the rate
124of return on factor “k.” A single-factor model, in which the market return is the only

125estimated factor, is obviously the basis of the CAPM. Accurate characterization of

126portfolio risk requires an accurate estimate of the covariance matrix of security

127returns. An alternative to the fundamentally-based Barra risk model is a risk model

128based on statistically-estimated (orthogonal) principal components, as described in

129the APT model of Blin et al. (1997).

130Extensions to the Traditional Mean–Variance Model

131A second extension to the mean–variance approach involves the minimization of

132the tracking error of an index. Markowitz (1987, 2000) rewrites the general

133portfolio construction model variance, V, to be minimized as:

V ¼ ðX �WÞTCðX �WÞ; (7.8)

3 The reader is referred to Chap. 2 of Guerard (2010) for a history of multi-index and multi-factor

risk models.
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134 whereWT ¼ (W1, . . ., Wn) ¼ the weights of an index of returns, X are the portfolio

135 weights, and rT ¼ (r1, . . ., rn) ¼ security returns.

136 One creates portfolios by allowing portfolio weights to differ from index weights

137 by �1%, EAW1, 2%, EAW2, 3%, EAW3, 4%, EAW4, or 5%, EAW5. Obviously,

138 one can use an infinite set of EAW variations. We restrict this analysis to EAW1,

139 EAW2, EAW3, and EAW4 for simplicity.

140 Portfolio Construction, Management, and Analysis:

141 An Introduction to Tracking Error at Risk

142 The USER simulation conditions are identical to those described in Guerard et al.

143 (2012), in which we use monthly optimization with 8% turnover, 125 basis points,

144 each way, of transactions cost.4 We use the APT risk model and optimizer described

145 in Blin et al. (1997) to create portfolios during the 1997–2009 period by varying the

146 portfolio lambda. One seeks to maximize the Geometric Mean, Sharpe Ratios, and

147 Information Ratios of portfolios. However, what if one wants to be considered a

148 “concentrated portfolio manager” who does not hold 300–500 stocks. How many

149 securities should one employ in portfolios using MV and EAW construction models

150 with a monthly set of 3,000 expected return and covariance data? Can a manager

151 construct efficient portfolios of 3,000 stock universes with fewer than 100 securities

152 in the portfolios?

153 Guerard (2012) demonstrated the effectiveness of APT and Sungard APT

154 systems in portfolio construction and management. Let us review the APT approach

155 to portfolio construction. The estimation of security weights, x, in a portfolio is the

156 primary calculation of Markowitz’s portfolio management approach, as we have

157 discussed in several chapters. The issue of security weights will be now considered

158 from a different perspective. As previously discussed, the security weight is the

159 proportion of the portfolio’s market value invested in the individual security.

xs ¼ MVs

MVp

; (7.9)

4Guerard (2012) decomposed the MQ variable into: (1) price momentum, (2) the consensus

analysts’ forecasts efficiency variable, CIBF, which itself is composed of forecasted earnings

yield, EP, revisions, EREV, and direction of revisions, EB, identified as breadth, Wheeler (1991),

and (3) the stock standard deviation, identified in Malkiel (1963) as a variable with predictive

power regarding the stock price-earnings multiple. Guerard (1997) and Guerard and Mark (2003)

found that the consensus analysts’ forecast variable dominated analysts’ forecasted earnings yield,

as measured by I/B/E/S 1-year-ahead forecasted earnings yield, FEP, revisions, and breadth.

Guerard reported domestic (US) evidence that the predicted earnings yield is incorporated into

the stock price through the earnings yield risk index. Moreover, CIBF dominates the historic low

price-to-earnings effect, or high earnings-to-price, PE.
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160where xs ¼ portfolio-weight insecurity s, MVs ¼ value of security s within the

161portfolio, and MVp ¼ the total market value of portfolio.

162The active weight of the security is calculated by subtracting the security weight

163in the (index) benchmark, b, from the security weight in the portfolio, p.

xs;p � xs;b: (7.10)

164Accordingly, if IBM has a 3% weight in the portfolio while its weight in the

165benchmark index is 2 and 1½ %, then IBM has a positive, 50 basis points active

166weight in the portfolio. The portfolio manager has an active, positive opinion of

167securities on which he or she has a positive active weight and a negative opinion of

168those securities with negative active weights.

169Markowitz analysis (1952, 1959) and its efficient frontier minimized risk for a

170given level of return. Risk can be measured by a stock’s volatility, or the standard

171deviation in the portfolio return over a forecast horizon, normally 1 year.

sp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðrp � EðrpÞÞ2

q
: (7.11)

172Blin and Bender created an APT, Advanced Portfolio Technologies, Analytics

173Guide (2005), which built upon the mathematical foundations of their APT system,

174published in Blin et al. (1997). The following analysis draws upon the APT

175analytics. Volatility can be broken down into systematic and specific risk:

s2p ¼ s2bp þ s2ep; (7.12)

176where sp ¼ total portfolio volatility, sbp ¼ systematic portfolio volatility, and

177sep ¼ specific portfolio volatility.

178Blin and Bender created a multifactor risk model within their APT risk model

179based on forecast volatility.

sp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
52

Xc
c¼1

Xs
i¼1

xibi;c

 !2

þ
Xs
i¼1

x2i e
2
i;x

0
@

1
A

vuuut ; (7.13)

180where sp ¼ forecast volatility of annual portfolio return, C ¼ number of statistical

181components in the risk model, xi ¼ portfolio weight in security i, bi,c ¼ the loading

182(beta) of security i on risk component c, and ei,w ¼ weekly specific volatility of

183security i.
184The Blin and Bender (1995) systematic volatility is a forecast of the annual

185portfolio standard deviation expressed as a function of each security’s systematic

186APT components.
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sbp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
52
Xc
c¼1

Xs
i¼1

xibi;c

 !2
vuut : (7.14)

187 Portfolio-specific volatility is a forecast of the annualized standard deviation

188 associated with each security’s specific return.

sep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
52
Xs
i¼1

x2i e
2
i;x

s
: (7.15)

189 Tracking error, te, is a measure of volatility applied to the active return of funds

190 (or portfolio strategies) indexed against a benchmark, which is often an index.

191 Portfolio tracking error is defined as the standard deviation of the portfolio return

192 less the benchmark return over 1 year.

ste ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðððrp � rbÞ � Eðrp � rbÞÞ2Þ

q
; (7.16)

193 where ste ¼ annualized tracking error, rp ¼ actual portfolio annual return, and

194 rb ¼ actual benchmark annual return.

195 The APT-reported tracking error is the forecast tracking error for the current

196 portfolio versus the current benchmark for the coming year.

ste ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
52

Xc
c¼1

Xs
i¼1

xi;p � xi;b

 !
bi;c

 !2

þ
Xs
i¼1

ðxi;p � xi;bÞ2e2i;x

vuut ; (7.17)

197 where xi,p � xi,b ¼ portfolio active weight.

198 Systematic Tracking Error of a portfolio is a forecast of the portfolio’s active

199 annual return as a function of the securities’ returns associated with APT risk model

200 components.

sbte ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
52
Xc
c¼1

Xs
i¼1

ðxi;p � xi;bÞb2i;c
 !

:

vuut (7.18)

201 Portfolio-specific tracking error can be written as a forecast of the annual

202 portfolio active return associated with each security’s specific behavior.

sete ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
52
Xs
i¼1

ðxi;p � xi;bÞ2e2i;x
s

: (7.19)

203 The marginal volatility of a security, or the measure of the sensitivity of portfolio

204 volatility, is relative to the change in the specific security weight.
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@s ¼ @sp
@xs

; (7.20)

205where ∂s ¼ marginal risk of security s.

@s ¼ bspsp: (7.21)

206The portfolio Value-at-Risk (VaR) is the expected maximum loss that a portfolio

207could produce over 1 year.

VaR ¼ up ¼ ~VT given probðVT< ~VTÞ ¼ c; (7.22)

208where VT ¼ actual potential portfolio value in 1 year, ~VT ¼ potential portfolio

209value in 1 year, and c ¼ desired confidence level for VaR (i.e., 95%).

210If a portfolio return is assumed to be generated from a normal distribution, then

up ¼
ffiffiffi
2

p
erf�1ð2x � 1ÞspV0; (7.23)

211where erf�1(x) ¼ inverse error function and V0 ¼ current portfolio value.

212The APT calculated VaR is written like this:

up ¼
ffiffiffi
2

p
erf�1ð2x � 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
52

X X
xibi;c

� �2
þ
X

x2i e
2
i;x

� �s !
V0: (7.24)

213The APT measure of portfolio risk estimating the magnitude that the portfolio

214return may deviate from the benchmark return over 1 year is referred to as TaR, or

215Tracking-at-Risk™.

TV
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1ffiffiffiffiffiffiffiffiffiffiffi
1� x

p ss

� �2

þ ð
ffiffiffi
2

p
erf�1ðxÞseÞ2

s
; (7.25)

216where TV
p ¼ TaRTM , x ¼ desired confidence level of TaR™, ss ¼ portfolio

217Systematic Tracking Error, erf�1(x) ¼ inverse error function, and se ¼ portfolio-

218specific tracking error.

219Blin and Bender (1987–1997) estimated a 20-factor beta model of covariances

220based on two-and-one-half years AU2of weekly stock returns data. The Blin and Bender

221Arbitrage Pricing Theory (APT) model followed the Ross factor modeling theory,

222but Blin and Bender estimated betas from at least 20 orthogonal factors. Blin and

223Bender never sought to identify their factors with economic variables.

224Guerard et al. (2010) found that the APT-TaR estimation procedure helped in

225creating 130/30 portfolios relative to traditional Markowitz mean–variance and

226equal active weighting portfolios. Guerard (2012) reported very similar results in
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227 construct equal active weighting (EAW2 with 2% deviations), mean–variance (MV

228 with a 4% maximum weight) and Mean–Variance Tracking Error at Risk (MVTaR)

229 portfolios for January 1997 to December 2009 using 8% monthly turnover, after the

230 initial portfolio is created, and 150 basis points of transactions costs each way with

231 USA and Global Expected Returns series. Comparing EAW, MV, and MV TaR

232 provides support for the MVTaR procedure in the USA, as TaR maximizes the

233 Geometric Mean, Sharpe Ratio, and Information Ratio relative to EAW and MV. In

234 the global universe, MVTaR maximizes the Geometric Mean and Sharpe Ratio.

235 EAW maximizes the Information Ratio in global markets over this time period.

236 Reported that APT-TaR estimation procedures were very successful in

237 maximizing Information Ratios and Sharpe Ratios relative to MV and EAW

238 techniques with the USER data.

239 Guerard, Krauklis, and Kumar (2012) reported that mean–variance dominated

240 EAW1, EAW2, and EAW3 strategies with the USER data. One had to use an

241 EAW4 to perform as well as mean–variance efficient frontier (Char. 7.1).

242 The USER EAW1 curve showed no risk-return trade-off. An investor would be

243 hard-pressed to outperform if he or she used an EAW1 strategy (unless he or she

244 managed an index-enhanced product).

245 Guerard, Krauklis, and Kumar (2012) reported great APT-TaR portfolio results

246 with the USER data. Let us review some of the Guerard, Krauklis, and Kumar

247 (2012) results, shown in Table 7.1.
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248 The Geometric Means, Sharpe Ratios, and Information Ratios for the

249 mean–variance and Mean–Variance Tracking Error at Risk support the use of

250 lambda 200 and the MVTaR approach.

251 It is well known that as one raises the portfolio lambda, the expected return of

252 portfolio rises and the number of securities in the optimal portfolios fall, see Blin

253 et al. (1997). Lambda, a measure of risk-aversion, the inverse of the risk-aversion

254 acceptance level of the Barra system, is a decision variable to determine the optimal

255 number of securities in a portfolio. Guerard et al. (2010) report a lambda of 200

256 maximized the Geometric Mean in Non-USA growth portfolios. Guerard, Krauklis,

257 and Kumar (2012) reported that the lambda of 200 is a necessary lambda with MV,

258 EAW3, and EAW4 portfolio construction model for the USER data to create

259 portfolios with fewer than 100 securities (Table 7.2) AU3.

260 Does the use of the TaR optimization technique produce a higher or lower

261 number of average securities in portfolios than the MV optimization technique?

262 A lambda of 200 implies optimal portfolios of 99.7 (100) stocks with

263 mean–variance, MV, whereas MVTaR requires only 77.8 (78) stocks. The Blin

264 and Bender TaR optimization procedure allows a manager to use fewer stocks in his

265 or her portfolios than a traditional mean–variance optimization technique manager

266 for a given lambda.

267 The reader notes that EAW1, EAW2, and EAW3 Tracking Error at Risk

268 portfolios require more stocks than MVTaR and are statistically dominated in the

269 risk-return trade-off curve, or Frontier, see Guerard, Krauklis, and Kumar (2012). In

270 spite of the Markowitz mean–variance portfolio construction and management

271 analysis being six decades old, it does very well in maximizing the Sharpe Ratio,

272 Geometric Mean, and Information Ratio relative to newer approaches. The

273 Markowitz Efficient Frontier (1952, 1956, 1959) methodology has performed

274 well with the USER data. Guerard, Krauklis, and Kumar (2012) reported that one

275 must move to an EAW4 and EAW5 strategies to outperform Mean–Variance

276 Tracking Error at Risk models.

Table 7.2 Average number

of securities in optimal

portfolios

USER analysist2:1

January 1997 to December 2009t2:2

Lambda EAW1 EAW2 EAW3 EAW4 MVt2:3

Tracking error at risk optimizationt2:4

500 118.1 85.4 74.7 68.6 64.8t2:5

200 122.6 92.2 82.5 77.4 77.8t2:6

100 125.6 100.0 92.2 90.5 90.5t2:7

50 131.3 111.7 105.0 103.5 103.4t2:8

10 147.3 137.4 133.7 133.2 136.2t2:9

Traditional optimizationt2:10

500 127.1 100.5 91.8 88.7 87.1t2:11

200 131.2 108.4 101.4 96.6 99.7t2:12

100 138.3 119.5 115.4 110.6 114.0t2:13

50 141.2 122.2 118.1 124.5 118.6t2:14

10 161.6 157.9 156.4 155.0 159.8t2:15

186 7 More Markowitz Efficient Portfolios Featuring the USER Data and an Extension. . .



277Portfolio Construction, Management, and Analysis: An

278Introduction to Systematic Tracking Error Optimization

279It has been recognized for many years that sample covariance matrices are not the

280most suitable for portfolio optimization (Chopra and Ziemba (1993)). When the

281objective is to create a minimum variance portfolio, there are a series of shrinkage

282techniques which have been proposed to modify the sample TS2covariance matrix

283Vsample (Ledoit and Wolf 2003, 2004), where the need for shrinkage is the estima-

284tion errors in the sample covariance matrix that may most likely render

285mean–variance optimizer less efficient. In its place, we suggest using the matrix

286obtained from the sample covariance matrix through a transformation called

287shrinkage. This tends to pull the most extreme coefficients towards more central

288values, systematically reducing estimation error.

289Wormald and van der Merwe (2012) searched, via shrinkage techniques, for a

290better estimate Vest 6¼ Vsample for the covariance matrix to be used within an

291optimization, and in particular one which provides a more robust estimator of

292out-of-sample portfolio variances when used with quite general sets of expected

293return estimates.5 Wormald and van der Merwe considered the advantages of using

294a factor model representation of the estimated covariance matrixVest which appears

295in the Markowitz objective function for optimizing active (benchmark-relative)

296portfolios when expected returns (alphas) are available for every stock.

297That Markowitz objective function takes the general form, in terms of the vector

298of weights w

U½w� ¼ �lwT � aþ 1=2w
T � Vest � w; (7.26)

299where l is called the risk trade-off parameter, and a is the vector of expected

300returns. A general factor decomposition of the covariance matrix Vest may be made

301in terms of asset exposures to factors X, the covariance matrix F of the factors

302themselves, and the diagonal residual or specific term D2

Vest ¼ Vfactor ¼ XTFX þ D2: (7.27)

303The particular factor model representation we will consider is that provided by

304an orthonormalized Principal Components Analysis (PCA) factor model, such that

305the principal components factor covariances are all zero for different factors, and

306factor variances take the value 1.

5 There is a large literature on the application of optimization to portfolio construction, starting

with Markowitz (1952, 1959) and reviewed in Fabozzi et al. (2002a). A recent comprehensive

overview can be found in the volume edited by Guerard (2010). An alternative approach might be

pursued using ultrametrics and spanning trees rather than correlation shrinkage, see Onnela et al.

(2003) for more on this approach.
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307 Then we have, for these particular PCA factor exposures B

F ¼ I:

308 In this case, we can express the estimated asset covariance matrix in the special

309 form

Vest ¼ VPCA ¼ BTBþ D2; (7.28)

310 whereB is the matrix of asset exposures to the orthonormalized factors andD2 is the

311 diagonal matrix of asset-specific risks in the model.

312 For Wormald and van der Merwe (2012), a key insight into the justification for

313 factor modeling of risk is that it can be understood as an example of shrinkage

314 techniques applied to the sample covariance matrix Vsample , and has been widely

315 accepted as an effective way of improving the risk characteristics of optimized

316 portfolios, as described in Chan et al. (1999) and Fabozzi et al. (2002b). A parallel

317 series of studies has focussed on the role of constraints in portfolio optimization,

318 including contributions from Jagannathan and Ma (2003) and DeMiguel et al.

319 (2008) who developed this line of inquiry and showed that many kinds of

320 constraints applied in portfolio optimization can be understood as equivalent to

321 statistically-sensible shrinkage of the sample covariance matrix. DeMiguel et al.

322 (2008) focused on a detailed comparison of a set of portfolio strategies which are

323 specified entirely by particular constraints defined in terms of the norm of the

324 portfolio-weight vector, and provide a moment-shrinkage interpretation for the

325 action of the constraint. In particular those authors prove analytically that quadratic

326 constraints such as constraints on norms constructed from portfolio-weight vectors

327 provide solutions which have a one-to-one correspondence with the portfolios

328 proposed via the covariance shrinkage technique discussed in Ledoit and Wolf

329 (2004). The empirical evidence they provide demonstrates that norm-constrained

330 portfolios often have a higher Sharpe Ratio than less-constrained portfolio

331 strategies and those considered by Jagannathan and Ma (2003) and Ledoit and

332 Wolf (2003, 2004).

333 The issue of how best to apply shrinkage to the covariance matrix is also

334 considered by Disatnik and Benninga (2007) who pay special attention to the use

335 of shrinkage estimators and portfolios of estimators, a concept closely related to

336 risk factor modeling. Their work, which is only concerned with the problem of

337 constructing risk-minimized portfolios, suggests that short-sales constraints make a

338 substantial difference in reducing the ex-post portfolio risk, compared to uncon-

339 strained global minimum solutions, and that it is quite difficult to obtain statistically

340 significant differences from the ex-post risk for similarly-constrained solutions with

341 differing covariance matrix estimators. This difficulty is one which also prevails

342 when looking at the evidence for improved ex-post risk-adjusted performance when

343 optimizing with an alpha model, which is the empirical case considered in the

344 present study. When the objective is to create a portfolio with maximal alpha for a
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345given risk (with either risk or alpha constrained to lie within bounds), there has been

346considerable attention paid to the question of whether the utility function should be

347modified to reflect the distinction between spanned and orthogonal alpha. The

348problem has been set out explicitly in Lee and Stefek (2008). The emphasis on

349treating spanned alpha (explained by the systematic factors of the risk model) and

350orthogonal alpha (not explained by those factors) differently within the utility

351function is motivated by very similar considerations to those treated in the literature

352on shrinkage approaches, where both the process of estimating expected asset

353return correlations via a model based on factors and the subsequent placing of

354constraints on portfolio norms (DeMiguel et al. 2008) have been shown to be

355effective in generating portfolios with significant out-of-sample improvement in

356risk characteristics.

357Let us review the Wormald and van der Merwe (2012) distinctions between

358systematic and specific parts of the risk, since it is this distinction which underlies

359the concern that spanned alpha should be treated differently from orthogonal alpha

360within an optimization. The portfolio variance may in general be decomposed into a

361factor (systematic or spanned) part and a residual (specific or orthogonal) part:

s2total ¼ s2s þ s2e : (7.29)

362The first part of the risk term, defined in terms of the portfolio-weight vectorw as

s2s ¼ wT � ðBTBÞ � w; (7.30)

363the factor risk of the portfolio, while the second part of the risk term, defined as

s2e ¼ wT � D2 � w; (7.31)

364the specific risk of the portfolio.

365Wormald and van der Merwe (2012) demonstrated via the USER strategy

366simulation how the APT optimizer can be useful in implementing portfolio con-

367struction. Solutions which are constrained to be bounded on both systematic and

368specific risk terms require a second-order cone solver for efficient solutions, as

369described in Kolbert and Wormald (2010).

370A great advantage in having efficient methods available to generate these

371solutions is that the investor’s intuition can be tested and extended as the underlying

372utility or the investment constraints are varied. We present an analysis of the effects

373of the systematic risk constraint on various style exposures including momentum

374within the strategy simulation.

375The objective function, to be minimized, for the optimization is now defined in

376terms of the active weight vector w of the portfolio, is given by exact analogy in:

U½w� ¼ �lwT � aþ 1=2w
T � ðBTBþ D2Þ � w; (7.32)
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377 where l is the risk trade-off parameter and a is the vector of MQ alphas.

378 The covariance matrix is given by the APT factor model representation of (7.5):

Vpca ¼ BTBþ D2; (7.33)

379 where B is the matrix of asset exposures to the APT factors and D2 is the diagonal

380 matrix of asset-specific risks in the model. In the empirical results set out here, we

381 are concerned with active risk measures, and so we introduce the terminology of

382 tracking error (TE) rather than variance for describing the factor and non-factor

383 parts of the active risk. The effects of shrinkage in factor model estimation are

384 demonstrated by considering the 2-part form of the total active risk (tracking error

385 squared) term; we write, following the analogy with (7.32):

s2A total ¼ s2As þ s2Ae: (7.34)

386 The first part of the risk term, defined as

s2As ¼ wT � ðBTBÞ � w; (7.35)

387 the active systematic risk (or systematic TE squared) of the portfolio, while the

388 second part of the risk term, defined as

s2Ae ¼ wT � D2 � w; (7.36)

389 the active specific risk (or specific TE squared) of the portfolio. Wormald and van

390 der Merwe (2012) demonstrated the effects of shrinkage implied by optimization

391 constraints within the empirical results, by putting separate constraints on the total

392 TE and the systematic TE during the optimized USER simulations.

393 Wormald and van der Merwe (2012) implemented three strategies. The three

394 strategies are very similar, except for differences in systematic active risk

395 constraints. The first strategy constructs portfolios without any constraints on

396 Systematic Tracking Error (TE), and is referred to as NoRiskConst. Another

397 strategy places a mild constraint on systematic TE and is referred to as

398 MildRiskConst. The mild constraint level reflects a level of systematic TE slightly

399 lower than the average of the observed values in NoRiskConst. In MildRiskConst
400 systematic TE is constrained to be below 2.3%. The third strategy constrains

401 systematic TE to be below 1.5% and is called StrongRiskConst. Wormald and

402 van der Merwe (2012) reported USER simulation results suggesting that applying

403 a mild Systematic TE constraint leads to slight outperformance in the long run

404 compared to other strategies. All three strategies outperform the benchmark. The

405 Systematic Tracking Error methodology of Wormald and van der Merwe (2012)

406 offered statistically significant asset selection and effective portfolio construction

407 and management.
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408We use an All Country World Growth (ACWG) index and its constituents for the

409January 2002 to December 2011 period. We use a lambda of 200 and employ the

410Wormald and van der Merwe (2012) risk parameters. We find that the No Risk

411Control and Mild Risk Control simulations dominate the Strong Risk Control

412simulation, a result consistent with Wormald and van der Merwe. The three risk

413models work well, producing at least 700 basis points of outperformance,

414subtracting 150 basis points of transactions costs, each way, please see Table 7.3.

415Markowitz Restored: The Alpha Alignment Factor Approach

416Several academics and practitioners, decided to perform a postmortem analysis of

417the mean–variance portfolios, attempted to understand the reasons for the deviation

418of ex-post performance from ex-ante targets and used their analysis to suggest

419enhancements to Markowitz’s original approach. Lee and Stefek (2008) and Saxena

420and Stubbs (2012) have worked on optimization models to “restore” a better

421relationship between ex-ante and ex-post risk model estimates. One of the funda-

422mental contributions was the development of linear factor models to capture the

423sources of systematic risk and characterize the key drivers of excess returns. While

424predicting expected returns is exclusively a forward looking activity, risk prediction

425also focuses on explaining cross-sectional variability of the returns process, mostly

426by using historical data. The first moment of the equity returns process drives

427expected return modelers while the second moment is the focus of risk modelers.

428These differences in the ultimate goals inevitably introduce certain “misalignment”

429between the factors used to forecast expected returns and risk. While expected

430return and risk models are indispensable components of any active strategy, there is

431a third component, namely, the set of constraints used to build a portfolio.

432Constraints play an important role in determining the composition of the optimal

433portfolio. Most real-life quantitative strategies have constraints that model desirable

434characteristics of the optimal portfolio. While some of these constraints may be

435mandatory, for example, a client’s reluctance to invest in stocks that benefit from

436alcohol, tobacco or gambling activities on ethical grounds, other constraints are the

437result of best practices in practical portfolio management. A turnover constraint

438may create a factor misalignment, as we will find shortly in the USER analysis.

t3:1Table 7.3 Mild, strong, and no risk controls in a global universe, January 2002 to December 2011

Universe: All Country World Growth (ACWG) t3:2

Model Geometric Mean Sharpe Ratio Information Ratio STD t3:3

No risk control 14.16 0.53 0.65 23.20 t3:4

Mild risk control 13.75 0.49 0.59 24.18 t3:5

Strong risk control 11.08 0.41 0.54 22.71 t3:6

Benchmark 4.56 0.16 13.23 t3:7

t3:8STD portfolio standard
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439 Saxena and Stubbs (2012) summarize, quantitative equity portfolio construction

440 entails complex interaction between factors used for forecasting expected returns,

441 risk, and the constraints. Problems that arise due to mutual discrepancies between

442 these three entities are collectively referred to as Factor Alignment Problems (FAP)

443 and constitute the emphasis of the current paper. Our key contributions are

444 summarized below:

445 1. The differences in the approaches that are used to build expected return forecast

446 and risk models manifest themselves as misalignment between the alpha and risk

447 factors.

448 2. Using an optimization tool to construct the optimal holdings has the unintended

449 effect of magnifying sources of misalignment. The optimize underestimates the

450 systematic risk of the portion of the expected returns which is not aligned with

451 the risk model. Consequently, it overloads the portion of the expected returns

452 which is uncorrelated with all the user risk factors.

453 3. Our empirical results on a test-bed of real-life active portfolios based on client

454 data clearly refute the validity of the assumption that the portion of alpha that is

455 uncorrelated with all the risk factors has no systematic risk, and suggest the

456 existence of systematic risk factors which are missing from the risk model.

457 4. We propose augmenting the risk model with an additional auxiliary factor to

458 account for the effect of the missing risk factors in the risk model. The

459 augmenting factor is constructed dynamically and takes a holistic view of the

460 portfolio construction process involving the alpha model, the risk model, and

461 the constraints. We provide analytical evidence to attest the effectiveness of the

462 proposed approach.

463 5. Alternatively, the risk model can be augmented by adding the factors that are

464 used to compute expected returns, and which are not represented in the risk

465 model. The addition of these factors will provide full alignment between the risk

466 model and the expected returns, but not necessarily handle any misalignment

467 issues due to the use of constraints.

468 Quantitative strategies are typically based on three key components, namely,

469 expected returns (or alphas), a risk model, and the constraints. The risk model is

470 geared towards explaining cross-sectional variability in the historical and predicted

471 returns. The efficacy of a risk model is judged by its ability to capture systematic

472 risk factors and the correlation structure between their respective factor returns. The

473 disparity in their respective objectives naturally affects the factors that are used in

474 the linear models that are used in their construction, and introduces misalignment.

475 With its primary focus on explaining the cross-sectional variability of the return

476 process, a risk model can often make do with ballpark estimates and gains little, if at

477 all, from razor sharp estimation of accounting entries. In the King’s English,

478 expected returns and risk modelers have different beliefs about the possible impact,

479 or lack thereof, of various economic events on their respective mandates, and the

480 misalignment between the alpha and risk factors is simply an inevitable manifesta-

481 tion of their diverse beliefs.
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482Second, expected returns and risk model developers can at times take a

483completely different view on the issue of earnings potential altogether. For

484instance, some alpha construction techniques use alternative valuation metrics

485such as different definitions of operating earnings and free cash flow for good

486reasons. These different measurement choices of the same underlying fundamental

487metric, namely earnings potential, lead to misalignment between the alpha and risk

488factors. Another source of misalignment arises from the use of book-to-price (B/P)

489ratio. Roughly speaking, book value is the accounting profession’s estimate of the

490company’s value; it reflects what the company paid for the assets except intangible

491assets such as goodwill developed internally, but it includes goodwill of subsidiary

492companies acquired by purchase. This “cost basis” is then adjusted downward by

493depreciation and amortization in a highly stylized and rigid attempt to reflect the

494economic depreciation that actually befalls (most) assets. Off balance-sheet items

495are ignored.

496Saxena and Stubbs (2012) applied their AAF methodology to the USER model,

497running a monthly backtest based on the above strategy in 2001–2009 time period

498for various values of s chosen from {0.5%, 0.6%, . . ., 3.0%}. For each value of s,
499Saxena and Stubbs (2012) ran the backtest in two setups that were identical in all

500respects except one, namely, only the second setup used the AAF methodology

501(AAF ¼ 20%). Saxena and Stubbs (2012) used Axioma’s fundamental medium

502horizon risk model (US2AxiomaMH) to model the active risk constraint. Saxena

503and Stubbs (2012) reported the time series of the misalignment coefficient of alpha,

504implied alpha, and the optimal portfolio and found that almost 40–60% of the alpha

505is not aligned with the risk factors. The alignment characteristics of implied alpha

506are significantly better than that of alpha. Among other things, this implies that the

507constraints of the above strategy, especially the long-only constraint, play a proac-

508tive role in containing the misalignment issue. Saxena and Stubbs (2012) reported

509that the orthogonal component of both alpha and implied alpha not only has

510systematic risk but the magnitude of the systematic risk is comparable to the

511systematic risk associated with a median risk factor in US2AxiomaMH. To sum-

512marize, the primary purpose of portfolio optimization is to create a portfolio having

513an optimal risk-adjusted expected return. If a portion of the risk in a portfolio

514derived from the orthogonal component of implied alpha is not accounted for, then

515the resulting risk-adjusted expected return cannot be optimal. Saxena and Stubbs

516(2012) showed the predicted and realized active risk for various risk target levels,

517noting the significant downward bias in risk prediction when the AAF methodology

518is not employed.6 Saxena and Stubbs (2012) showed the realized risk-return frontier

6 The Bias statistic, shown is a statistical metric which is used to measure the accuracy of risk

prediction; if the ex-ante risk prediction is unbiased, then the bias statistic should be close to 1.0

(see Saxena and Stubbs 2010 for more details). Clearly, the bias statistics obtained without the aid

of the AAF methodology are significantly above the 95% confidence interval thereby showing that

the downward bias in the risk prediction of optimized portfolios is statistically significant. The

AAF methodology recognizes the possibility of inadequate systematic risk estimation and guides

the optimizer to avoid taking excessive unintended bets.
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519 and reported that using the AAF methodology not only improves the accuracy of

520 risk prediction but also moves the ex-post frontier upwards thereby giving ex-post

521 performance improvements. The distinguishing feature of quantitative investing as

522 a profession is its belief in generating optimal risk-adjusted returns.

523 Saxena and Stubbs (2012) held that an approach that cannot predict the risk of

524 the portfolio correctly cannot be expected to produce portfolios that are optimal in

525 the ex-post sense. In other words, such an approach compromises the greater goal of

526 Markowitz MV efficiency and yields suboptimal portfolios. The AAF approach, on

527 the other hand, recognizes the possibility of missing systematic risk factors and

528 makes amends to the extent possible without complete recalibration of the risk

529 model that explicitly accounts for the latent systematic risk in alpha factors. In the

530 process of doing so, AAF approach not only improves the accuracy of risk predic-

531 tion but also partly repairs the lack of efficiency in the optimal portfolio.

532 Saxena and Stubbs (2012) acknowledged that the AAF approach has three key

533 limitations. First, the AAF construct is based on the assumption that the factor

534 returns associated with the missing factors are uncorrelated with the factor returns

535 associated with the regular factors in the user risk model. The fact that the AAF is

536 orthogonal to the regular factors, by itself, does not imply lack of correlation of

537 factor returns. To see this, note that even though the industry factors derived from

538 the GICS classification scheme are mutually orthogonal, the corresponding factor

539 returns are often correlated. By being correlation agnostic, the AAF approach fails

540 to capture the interaction between factor returns that can be attributed to missing

541 factors and the user risk factors. Second, the AAF approach requires calibration of

542 the volatility parameter which presents additional practical problems. Furthermore,

543 the temporal stationarity of the mentioned volatility parameter is not guaranteed,

544 which introduces additional complications related to dynamic estimation of the

545 volatility parameter. Third, the AAF approach does not use historical data to

546 improve its representation of the missing factors. In other words, it is agnostic to

547 the nature of residual returns which might have useful information regarding

548 missing factors. A natural way to circumvent these problems is to recalibrate the

549 user risk model taking into account the possible sources of latent systematic risk.

550 Saxena and Stubbs (2012) hold that Custom Risk Models (CRM) accomplish

551 exactly that goal. CRM are derived from the user risk model, referred to as the

552 base model, by introducing additional factors with the intent to eliminate various

553 sources of misalignment. The additional factors are referred to as custom risk

554 factors, and the resulting risk models are said to be customized. Construction of

555 CRM involves complete recalibration of the covariance matrix by re-running the

556 cross-sectional regressions, recomputing factor returns attributed to the user and

557 custom risk factors, and using the resulting time series of factor and residual returns

558 to compute the factor–factor covariance matrix and specific risk. To summarize,

559 Saxena and Stubbs (2012) believe that a combination of CRM and AAF approach

560 offers a practical and holistic approach to FAP.

561 Let us take a final look at the USER data and portfolios using Axioma. If one

562 uses the Axioma Medium Horizon Fundamental Risk Model for analyzing the

563 APT-constructed (l ¼ 200) results reported in Guerard et al. (2012), one finds
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564that asset selection dominates the portfolio returns; factor-based returns are �5.6

565(%) whereas specific returns for 16.3%. The asset selection (active) of the APT-

566estimated USERmodel is 9.7% with an Information Ratio of 1.12 and a t-statistic of
5673.68, see Table 7.4. The IRs and t-statistics are similar to those reported in Guerard

568et al. (2012). Furthermore, what about testing the USER model using higher

569targeting tracking errors in the Axioma system? We report, in Table 7.5, that the

570Geometric Means and Sharpe Ratios increase with higher targeted tracking errors

571while the Information Ratios fall (tracking errors increase more then realized

572portfolio returns) with USER in the Axioma system. The Geometric Means and

t4:1Table 7.4 Axioma Fundamental Risk Model attribution of APT Lambda ¼ 200 Portfolio Returns

(USER data, January 1999 to December 2009)

Total returns t4:2

Portfolio 0.095 t4:3

Benchmark �0.012 t4:4

Active 0.107 t4:5

Local returns Return Risk IR T-Stat Beg # of assets End # of assets t4:6

Portfolio 0.095 0.221 n/a n/a 94 92 t4:7

Benchmark �0.012 0.221 n/a n/a 1854 1878 t4:8

Active 0.107 0.096 1.115 3.683 1898 1922 t4:9

Factor/specific contribution breakdown t4:10

Factor contribution �0.056 t4:11

Specific return contribution 0.163 t4:12

Active return 0.107 t4:13

Return decomposition t4:14

Contributor Return Return Return Risk IR T-Stat t4:15

Risk-free

rate

0.036 t4:16

Portfolio

return

0.095 t4:17

Benchmark

return

�0.012 t4:18

Active

return

0.107 0.096 1.115 3.683 t4:19

Market

timing

0.000 n/a n/a n/a t4:20

Specific

return

0.163 0.063 2.567 8.483 t4:21

Factor

contribution

�0.056 0.072 �0.778 �2.571 t4:22

US2Axioma

MH.Style

�0.045 0.068 �0.659 �2.178 t4:23

US2Axioma

MH.

Industry

�0.011 0.032 �0.334 �1.103 t4:24

Contribution HR Risk IR T-Stat t4:25

(continued)
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t4:26 Table 7.4 (continued)

Contribution

Avg.

Wtd. Exp. HR Risk IR T-Statt4:27

Avg.

Wtd. Exp.

Contributors to active return by US2AxiomaMH.Stylet4:26

US2AxiomaMH.Stylet4:27

US2AxiomaMH.Size 0.042 �1.053 0.557 0.047 0.881 2.911t4:28

US2AxiomaMH.Medium-Term

Momentum

0.026 0.486 0.748 0.021 1.232 4.071t4:29

US2AxiomaMH.Value 0.010 0.433 0.710 0.008 1.286 4.248t4:30

US2AxiomaMH.Market Sensitivity 0.000 0.063 0.550 0.012 0.019 0.063t4:31

US2AxiomaMH.Exchange Rate

Sensitivity

0.000 �0.357 0.580 0.007 0.027 0.090t4:32

US2AxiomaMH.Growth �0.001 �0.044 0.443 0.002 �0.682 �2.252t4:33

US2AxiomaMH.Short-Term

Momentum

�0.007 0.055 0.405 0.010 �0.735 �2.428t4:34

US2AxiomaMH.Leverage �0.011 0.351 0.458 0.008 �1.298 �4.288t4:35

US2AxiomaMH.Liquidity �0.046 �1.148 0.351 0.036 �1.269 �4.194t4:36

US2AxiomaMH.Volatility �0.057 0.399 0.244 0.022 �2.591 �8.560t4:37

US2AxiomaMH.Industryt4:38

US2AxiomaMH.Computers

& Peripherals

0.009 �0.047 0.473 0.016 0.528 1.744t4:39

US2AxiomaMH.Communications

Equipment

0.008 �0.040 0.458 0.013 0.621 2.050t4:40

US2AxiomaMH.Pharmaceuticals 0.005 �0.062 0.496 0.016 0.307 1.014t4:41

US2AxiomaMH.Metals & Mining 0.004 0.022 0.618 0.010 0.343 1.135t4:42

US2AxiomaMH.Media 0.003 �0.006 0.565 0.005 0.758 2.505t4:43

US2AxiomaMH.Energy Equipment

& Services

0.003 �0.017 0.473 0.007 0.485 1.603t4:44

US2AxiomaMH.Industrial

Conglomerates

0.002 �0.044 0.450 0.012 0.193 0.637t4:45

US2AxiomaMH.Multiline Retail 0.002 �0.016 0.542 0.006 0.383 1.266t4:46

US2AxiomaMH.Food & Staples

Retailing

0.002 �0.020 0.527 0.005 0.443 1.465t4:47

US2AxiomaMH.Specialty Retail 0.002 0.011 0.611 0.007 0.306 1.011t4:48

US2AxiomaMH.Aerospace &

Defense

0.002 �0.013 0.450 0.005 0.436 1.441t4:49

US2AxiomaMH.Beverages 0.002 �0.020 0.504 0.006 0.335 1.108t4:50

US2AxiomaMH.Oil, Gas &

Consumable Fuels

0.002 0.018 0.542 0.007 0.232 0.768t4:51

US2AxiomaMH.Machinery 0.002 �0.002 0.534 0.003 0.523 1.730t4:52

US2AxiomaMH.Household Products 0.002 �0.020 0.466 0.005 0.340 1.122t4:53

US2AxiomaMH.IT Services 0.001 �0.014 0.473 0.004 0.307 1.014t4:54

US2AxiomaMH.Tobacco 0.001 �0.008 0.489 0.003 0.292 0.966t4:55

US2AxiomaMH.Hotels, Restaurants

& Leisure

0.001 �0.003 0.519 0.004 0.252 0.831t4:56

US2AxiomaMH.Electrical

Equipment

0.001 �0.005 0.527 0.002 0.460 1.520t4:57

(continued)
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t4:58Table 7.4 (continued)

Contribution

Avg.

Wtd. Exp. HR Risk IR T-Stat t4:59

US2AxiomaMH.Biotechnology 0.001 0.014 0.527 0.006 0.128 0.424 t4:60

US2AxiomaMH.Personal Products 0.001 �0.005 0.534 0.001 0.637 2.105 t4:61

US2AxiomaMH.Road & Rail 0.001 �0.003 0.450 0.002 0.292 0.964 t4:62

US2AxiomaMH.Independent Power

Producers & Energy Traders

0.001 �0.002 0.443 0.001 0.589 1.947 t4:63

US2AxiomaMH.Construction &

Engineering

0.000 0.003 0.443 0.002 0.277 0.917 t4:64

US2AxiomaMH.Diversified

Consumer Services

0.000 0.000 0.489 0.002 0.135 0.447 t4:65

US2AxiomaMH.Containers &

Packaging

0.000 0.001 0.481 0.002 0.119 0.395 t4:66

US2AxiomaMH.Gas Utilities 0.000 0.001 0.496 0.001 0.140 0.461 t4:67

US2AxiomaMH.Health Care

Technology

0.000 0.000 0.382 0.000 0.674 2.227 t4:68

US2AxiomaMH.Air Freight &

Logistics

0.000 �0.006 0.473 0.002 0.058 0.190 t4:69

US2AxiomaMH.Chemicals 0.000 0.007 0.573 0.003 0.030 0.099 t4:70

US2AxiomaMH.Water Utilities 0.000 0.000 0.481 0.000 0.088 0.292 t4:71

US2AxiomaMH.Transportation

Infrastructure

0.000 0.000 0.076 0.000 0.481 1.589 t4:72

US2AxiomaMH.Electric Utilities 0.000 0.009 0.496 0.005 �0.001 �0.004 t4:73

US2AxiomaMH.Semiconductors &

Semiconductor Equipment

0.000 �0.030 0.473 0.013 �0.006 �0.019 t4:74

US2AxiomaMH.Office Electronics 0.000 �0.001 0.412 0.001 �0.171 �0.565 t4:75

US2AxiomaMH.Consumer Finance 0.000 �0.005 0.481 0.004 �0.032 �0.107 t4:76

US2AxiomaMH.Airlines 0.000 0.008 0.489 0.005 �0.028 �0.094 t4:77

US2AxiomaMH.Construction

Materials

0.000 0.000 0.489 0.001 �0.252 �0.833 t4:78

US2AxiomaMH.Diversified

Financial Services

0.000 �0.002 0.450 0.002 �0.139 �0.458 t4:79

US2AxiomaMH.Food Products 0.000 0.008 0.565 0.004 �0.057 �0.189 t4:80

US2AxiomaMH.Professional

Services

0.000 �0.001 0.443 0.001 �0.346 �1.144 t4:81

US2AxiomaMH.Distributors 0.000 0.001 0.527 0.000 �0.779 �2.575 t4:82

US2AxiomaMH.Multi-Utilities 0.000 0.007 0.473 0.004 �0.130 �0.429 t4:83

US2AxiomaMH.Software �0.001 �0.033 0.450 0.010 �0.057 �0.190 t4:84

US2AxiomaMH.Life Sciences Tools

& Services

�0.001 �0.001 0.435 0.001 �0.538 �1.779 t4:85

US2AxiomaMH.Building Products �0.001 0.003 0.489 0.002 �0.265 �0.876 t4:86

US2AxiomaMH.Thrifts & Mortgage

Finance

�0.001 0.003 0.489 0.004 �0.151 �0.499 t4:87

US2AxiomaMH.Marine �0.001 0.000 0.389 0.000 �1.207 �3.990 t4:88

US2AxiomaMH.Real Estate

Investment Trusts (REITs)

�0.001 0.013 0.473 0.008 �0.080 �0.266 t4:89

(continued)
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t4:90 Table 7.4 (continued)

Contribution

Avg.

Wtd. Exp. HR Risk IR T-Statt4:91

US2AxiomaMH.Health Care

Equipment & Supplies

�0.001 0.002 0.443 0.004 �0.179 �0.591t4:92

US2AxiomaMH.Commercial

Services & Supplies

�0.001 0.011 0.519 0.004 �0.180 �0.595t4:93

US2AxiomaMH.Leisure Equipment

& Products

�0.001 0.002 0.405 0.002 �0.474 �1.565t4:94

US2AxiomaMH.Trading Companies

& Distributors

�0.001 0.016 0.511 0.004 �0.223 �0.738t4:95

US2AxiomaMH.Capital Markets �0.001 �0.006 0.443 0.004 �0.244 �0.805t4:96

US2AxiomaMH.Real Estate

Management & Development

�0.001 0.004 0.504 0.001 �0.782 �2.583t4:97

US2AxiomaMH.Auto Components �0.001 0.000 0.405 0.001 �1.115 �3.684t4:98

US2AxiomaMH.Health Care

Providers & Services

�0.001 0.016 0.565 0.006 �0.211 �0.696t4:99

US2AxiomaMH.Paper & Forest

Products

�0.002 0.001 0.489 0.002 �0.995 �3.287t4:100

US2AxiomaMH.Commercial Banks �0.002 0.037 0.496 0.014 �0.149 �0.492t4:101

US2AxiomaMH.Insurance �0.003 0.013 0.427 0.007 �0.363 �1.199t4:102

US2AxiomaMH.Household Durables �0.003 0.021 0.481 0.008 �0.366 �1.210t4:103

US2AxiomaMH.Textiles, Apparel &

Luxury Goods

�0.003 0.025 0.511 0.008 �0.359 �1.187t4:104

US2AxiomaMH.Internet & Catalog

Retail

�0.004 0.003 0.412 0.003 �1.363 �4.504t4:105

US2AxiomaMH.Automobiles �0.004 0.023 0.458 0.008 �0.497 �1.643t4:106

US2AxiomaMH.Wireless

Telecommunication Services

�0.004 0.022 0.511 0.006 �0.644 �2.126t4:107

US2AxiomaMH.Diversified

Telecommunication Services

�0.006 0.049 0.489 0.012 �0.552 �1.824t4:108

US2AxiomaMH.Electronic

Equipment, Instruments &

Components

�0.009 0.039 0.534 0.014 �0.677 �2.237t4:109

US2AxiomaMH.Internet Software &

Services

�0.016 0.018 0.405 0.013 �1.174 �3.880t4:110

US2AxiomaMH.Sectorst4:111

US2AxiomaMH.Consumer Staples-S 0.007 �0.065 0.466 0.015 0.481 1.589t4:112

US2AxiomaMH.Energy-S 0.005 0.001 0.542 0.007 0.689 2.277t4:113

US2AxiomaMH.Industrials-S 0.005 �0.034 0.466 0.016 0.317 1.046t4:114

US2AxiomaMH.Health Care-S 0.003 �0.032 0.550 0.014 0.240 0.793t4:115

US2AxiomaMH.Materials-S 0.002 0.031 0.595 0.011 0.186 0.615t4:116

US2AxiomaMH.Utilities-S 0.000 0.015 0.565 0.006 0.041 0.135t4:117

US2AxiomaMH.Consumer

Discretionary-S

�0.007 0.061 0.527 0.023 �0.294 �0.973t4:118

US2AxiomaMH.Information

Technology-S

�0.008 �0.108 0.405 0.035 �0.225 �0.743t4:119

US2AxiomaMH.Financials-S �0.009 0.058 0.466 0.024 �0.360 �1.190t4:120

US2AxiomaMH.Telecommunication

Services-S

�0.010 0.071 0.496 0.016 �0.654 �2.160t4:121
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573 Sharpe Ratios are higher in the Axioma 20-factor principal components estimated

574 Statistical Risk Model than in the Axioma Fundamental Risk Model.

575 An Global Expected Returns Model: Why Everyone

576 Should Diversify Globally, 1998–2009

577 Guerard et al. (2012) extended a stock selection model originally developed and

578 estimated in Guerard and Takano (1991) and Bloch et al. (1993), adding a Brush-

579 based price momentum variable, taking the price at time t � 1 divided by the price

580 12 months ago, t � 12, denoted PM, and the consensus (I/B/E/S) analysts’ earnings

581 forecasts and analysts’ revisions composite variable, CTEF, to the stock selection

582 model. Guerard et al. (2012) referred to the stock selection model as a United States

583 Expected Returns (USER) model. We can estimate an expanded stock selection

584 model to use as an input of expected returns in an optimization analysis. The

585 universe for all analysis consists of all securities on Wharton Research Data

586 Services (WRDS) platform from which we download the I/B/E/S database, and

587 the Global Compustat databases. The I/B/E/S database contains consensus analysts’

588 earnings per share forecast data and the Global Compustat database contains

589 fundamental data, i.e., the earnings, book value, cash flow, depreciation, and sales

590 data, used in this analysis for the January 1990 to December 2009 time period. The

591 information coefficient, IC, is estimated as the slope of a regression line in which

592 ranked subsequent returns are expressed as a function of the ranked strategy, at a

593 particular point of time. The high fundamental variables, earnings, bookvalue, cash

594 flow, and sales produce higher ICs in the global universe than in the USA universe

595 where USER was estimated, see Table 7.6. Moreover, analysts’ 1-year-ahead and 2-

596 year ahead revisions, RV1 and RV2, respectively, were much lower in global

597 markets, than USA market. Breadth, BR, and forecasted earnings yields, FEP,

598 were positive but less than in the USA market. The ICs on the analysts’ forecast

599 variable, CTEF, and price momentum variable, PM, were lower than in the USA

600 universe.

601 The stock selection model estimated in this study, denoted as Global Expected

602 Returns, GLER, is:

TRtþ1 ¼ a0 þ a1EPt þ a2BPt þ a3CPt þ a4SPt þ a5REPt þ a6RBPt
þ a7RCPt þ a8RSPt þ a9CTEFt þ a10PMt þ et; (7.37)

603 where EP ¼ [earnings per share]/[price per share] ¼ earnings–price ratio; BP ¼ [

604 book value per share]/[price per share] ¼ book–price ratio; CP ¼ [cash flow per

605 share]/[price per share] ¼ cash flow–price ratio; SP ¼ [net sales per share]/[price

606 per share] ¼ sales–price ratio; REP ¼ [current EP ratio]/[average EP ratio over the

607 past 5 years]; RBP ¼ [current BP ratio]/[average BP ratio over the past 5 years];

608 RCP ¼ [current CP ratio]/[average CP ratio over the past 5 years]; RSP ¼ [current
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609SP ratio]/[average SP ratio over the past 5 years]; CTEF ¼ consensus earnings per

610share I/B/E/S forecast, revisions and breadth; PM ¼ price momentum; and e ¼
611randomly distributed error term.

612The GLER model also is estimated using a weighted latent root regression,

613WLRR, analysis on (7.1) to identify variables statistically significant at the 10%

614level; uses the normalized coefficients as weights; and averages the variable

615weights over the past 12 months. The 12-month smoothing is consistent with the

616four-quarter smoothing in Guerard and Takano (1991) and Bloch et al. (1993).

617While EP and BP variables are significant in explaining returns, the majority of the

618forecast performance is attributable to other model variables, namely the relative

619earnings-to-price, relative cash-to-price, relative sales-to-price, price momentum,

620and earnings forecast variables. The consensus earnings forecasting variable,

621CTEF, and the price momentum variable, PM, dominate the composite model, as

622is suggested by the fact that the variables account for 48% of the model average

623weights, slightly higher than the two variables combining for 44% of the weights in

624the USER model. The time-average value of estimated coefficients:

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
0:048 0:069 0:044 0:047 0:050 0:032 0:039 0:086 0:216 0:257

:

625In terms of information coefficients, ICs, the use of the WLRR procedure

626produces a virtually identical IC for the models during the 1980–2009 time period,

6270.042, versus the equally-weighted IC of 0.043. The GLER model, has compared to

628the USER model in Guerard et al. (2012) has approximately the same ICs. The IC

629test of statistical significance can be referred to as a Level I test. Further evidence on

630the anomalies is found in Levy (1999).

Table 7.6 Global composite

model component ICs
January 1990 to September 2009 t6:1

Variable IC t6:2

EP 0.048 t6:3

BP 0.019 t6:4

CP 0.042 t6:5

SP 0.008 t6:6

DP 0.058 t6:7

RV1 0.011 t6:8

RV2 0.019 t6:9

BR1 0.026 t6:10

BR2 0.024 t6:11

FEP1 0.034 t6:12

FEP2 0.029 t6:13

CTEF 0.023 t6:14

PM 0.022 t6:15

EWC 0.043 t6:16

GLER 0.042 t6:17
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631 We report that in the Axioma GLER simulations, as with USER, the Axioma

632 Statistical Model dominates the Axioma Fundamental Model and AAF dominates

633 the non-AAF Frontiers in terms of Geometric Means and Sharpe Ratios with the

634 GLER Model (see Table 7.7).7 Moreover, in Table 7.8, lower turnover (4%,

635 monthly) allows the AAF factor to increase. An AAF of 30% is preferred to AAF

636 levels of 10 or 70%, for most tracking errors and turnover. The GLER model risk-

637 return frontier demonstrates the effectiveness of the USER analysis in global

638 markets. Finally, if one graphs portfolio excess returns relative to portfolio tracking

639 errors, one sees in Chap. 7.2 that the Axioma Statistical Risk Model frontier with

640 AAF ¼ 30% dominates the Axioma Statistical Risk Model frontier without AAF.

641 Furthermore, the Axioma Statistical Risk Model frontier dominates the Axioma

642 Fundamental Risk Model frontier (with and without AAF).

643 Global Investing in the World of Business, 1999–2011

644 In the world of business, one does not access academic databases annually, or even

645 quarterly. Most industry analysis uses FactSet database and the Thomson Financial

646 (I/B/E/S) earnings forecasting database. We can estimate (7.37) for all securities on

647 the Thomson Financial and FactSet databases, some 46,550 firms in December

648 2011. We can decompose this universe into USA, Non-USA, and global securities.

649 We can refer to these universes as the USER, NUSER, and GLER databases,

650 respectively. One can estimate (7.37) models for index constituents in the three

651 growth universes: the Russell 3000 Growth (R3G) universe; the MSCI All Country

652 World ex USAGrowth (ACWexUSG) universe; and the All CountryWorld Growth

653 (ACWG) universe. The R3G analysis is shown in Table 7.9; the ACWexUSG

654 analysis is reported in Table 7.10; and ACWG universe analysis is shown in

655 Table 7.11. The GLER conclusions are confirmed: (1) the Axioma Statistical

656 Model dominates the Axioma Fundamental Model and (2) AAF dominates the

657 non-AAF Frontiers in terms of Information Ratios and Sharpe Ratios with the

658 models.8 An examination of Tables 7.9, 7.10, and 7.11, shows that Non-USA and

659 global models produce higher Sharpe Ratios and higher Information Ratios than the

660 USER model in the 1999–2011 period. Non-USA and global stocks are more

661 inefficient than USA stocks, a result reported in Guerard (2012). If we graph the

662 USER, NUSER, and GLER active risks and active returns, we find that GLER and

7 The author worked on the GLER analysis with Anureet Saxena. Any errors remaining in this

section are the sole responsibility of the author.
8 It is interesting to note that initial Axioma analysis suggests that purchasing AWCG constituents

produce similar Information Ratios and Sharpe Ratios to purchasing FactSet and Thomson

Financial securities (with at least two analysts covering the stocks, a universe exceeding index

constituents by a factor of 5–6 times). The similar Sharpe Ratios and IRs are very interesting given

the very illiquid composition of many securities (trading volume of less than $15 MMUSD, daily).
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663NUSER dominate USER (see Char. 7.3). NUSER dominates GLER at an 8%

664tracking error.

665Let us take a closer look at the application at the Systematic Tracking Error

666(STE) optimization technique reported in Wormald and van der Merwe (2012). Let

667us take the FactSet and Thomson Financial universe for the 1990–2011 period and

668reduce it by requiring at least two analysts to cover stocks. The universe goes from

669466,550 to approximately 7,500 stocks. We will refer to this universe as the

670GLER2012 universe. If one runs STE optimization with (1) No Risk Constraints;

671(2) 8% monthly turnover; (3) 150 basis points of transactions costs, each way; (4) a

672threshold position weight of 35 basis points; (5) and a maximum security weight of

6734%; (5) long-only portfolio such that the minimum weight is 0; and one uses lambda

674values of 500 and 200, then one produces portfolios producing higher Geometric

675Means, Sharpe Ratios, and Information Ratios than the universe benchmark (see

676Table 7.12). The Axioma attribution reveals statistical significant active return

677(see Table 7.13). The FactSet GLER regression weights are graphed in Char. 7.4.

678In the FactSet universe, CTEF and PM amount to only 38% of the GLER model

679weights. PM has the largest weight, at about 24%.

680There should be three results from the USER data analysis. An asset manager

681should set tracking errors at 8% to maximize the Geometric Mean, Sharpe Ratio,

682and Information Ratio; higher lambdas are preferred to lower lambdas (use at least

683an APT lambda of 100); and the Alpha Alignment Factor is most appropriate.
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t12:1Table 7.12 Portfolio criteria for no risk constraints STE portfolios

Geometric Means Sharpe Ratios Information Ratios Tracking Errors t12:2

Lambda ¼ 500 17.96 0.67 0.92 14.69 t12:3

Lambda ¼ 200 14.16 0.53 0.65 14.63 t12:4

ACWG benchmark 4.56 0.16 t12:5
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t13:1Table 7.13 Portfolio GLER L500 results

Portfolio VA_NoRCGLER_McKinley t13:2

Benchmark MSCI WORLD GROWTH t13:3

Attribution period 01/31/2003 to 01/31/2012 t13:4

Frequency Monthly t13:5

Risk model WW21AxiomaMH t13:6

Bayesian half life 2.0 t13:7

Realized market return (1/year) 0 t13:8

Return type Geometric t13:9

Risk scaling Annualized t13:10

Risk type PREDICTED_RISK t13:11

Report date 06/29/2012 t13:12

Base currency USD t13:13

Total returns t13:14

Portfolio 0.187 t13:15

Benchmark 0.080 t13:16

Active 0.107 t13:17

Local returns Return Risk IR T-Stat Beg # of assets End # of assets t13:18

Portfolio 0.187 0.232 n/a n/a 108 123 t13:19

Benchmark 0.080 0.192 n/a n/a 528 965 t13:20

Active 0.107 0.093 1.148 3.443 633 1075 t13:21
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Factor/specific contribution breakdownt13:22

Factor contribution 0.042t13:23

Specific return contribution 0.065t13:24

Active return 0.107t13:25

Contributor Return Return Return Risk IR T-Statt13:26

Return decompositiont13:27

Risk-free rate 0.024t13:28

Portfolio return 0.187t13:29

Benchmark return 0.080t13:30

Active return 0.107 0.093 1.148 3.443t13:31

Market timing 0.000 n/a n/a n/at13:32

Specific return 0.065 0.060 1.082 3.246t13:33

Factor contribution 0.042 0.071 0.588 1.763t13:34

WW21AxiomaMH.Style 0.014 0.059 0.233 0.698t13:35

WW21AxiomaMH.Market 0.000 0.000 0.558 1.673t13:36

WW21AxiomaMH.Local 0.002 0.007 0.285 0.855t13:37

WW21AxiomaMH.Industry 0.001 0.017 0.066 0.198t13:38

WW21AxiomaMH.Currency 0.009 0.016 0.571 1.712t13:39

WW21AxiomaMH.Country 0.015 0.025 0.600 1.799t13:40

Contribution

Avg.

Wtd. Exp. HR Risk IR T-Statt13:41

WW21AxiomaMH.Stylet13:42

WW21AxiomaMH.Medium-Term

Momentum

0.045 0.321 0.741 0.017 2.573 7.718t13:43

WW21AxiomaMH.Size 0.014 �0.894 0.565 0.044 0.324 0.972t13:44

WW21AxiomaMH.Value 0.010 0.436 0.620 0.011 0.898 2.694t13:45

WW21AxiomaMH.Liquidity 0.003 0.137 0.556 0.005 0.688 2.065t13:46

WW21AxiomaMH.Growth 0.003 0.314 0.583 0.004 0.783 2.348t13:47

WW21AxiomaMH.Exchange Rate

Sensitivity

�0.001 0.083 0.444 0.002 �0.269 �0.806t13:48

WW21AxiomaMH.Leverage �0.004 0.090 0.426 0.002 �2.312 �6.935t13:49

WW21AxiomaMH.Short-Term

Momentum

�0.014 0.106 0.380 0.012 �1.183 �3.550t13:50

WW21AxiomaMH.Volatility �0.043 0.630 0.380 0.049 �0.879 �2.636t13:51

Contributors to Active Return by WW21AxiomaMH.Markett13:52

WW21AxiomaMH.Markett13:53

WW21AxiomaMH.Global Market 0.000 0.000 0.602 0.000 0.558 1.673t13:54

Contributors to Active Return by WW21AxiomaMH.Localt13:55

WW21AxiomaMH.Localt13:56

WW21AxiomaMH.Domestic China 0.002 0.009 0.222 0.007 0.285 0.855t13:57

Contributors to Active Return by WW21AxiomaMH.Industryt13:58

WW21AxiomaMH.Industryt13:59

WW21AxiomaMH.Metals & Mining 0.004 0.043 0.556 0.006 0.632 1.897t13:60

WW21AxiomaMH.Media 0.002 �0.013 0.630 0.001 1.859 5.577t13:61

WW21AxiomaMH.Real Estate

Investment Trusts (REITs)

0.002 0.026 0.528 0.003 0.567 1.701t13:62

WW21AxiomaMH.Pharmaceuticals 0.002 �0.052 0.481 0.005 0.334 1.003t13:63

(continued)
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t13:64Table 7.13 (continued)

Contribution

Avg.

Wtd. Exp. HR Risk IR T-Stat t13:65

WW21AxiomaMH.Communications

Equipment

0.001 �0.018 0.519 0.002 0.507 1.521 t13:66

WW21AxiomaMH.Wireless

Telecommunication Services

0.001 0.031 0.565 0.002 0.497 1.492 t13:67

WW21AxiomaMH.Health Care

Providers & Services

0.001 0.008 0.537 0.003 0.291 0.874 t13:68

WW21AxiomaMH.Thrifts &

Mortgage Finance

0.001 0.001 0.481 0.001 0.974 2.923 t13:69

WW21AxiomaMH.Transportation

Infrastructure

0.001 0.009 0.509 0.001 0.869 2.607 t13:70

WW21AxiomaMH.Internet &

Catalog Retail

0.001 0.001 0.500 0.001 0.580 1.741 t13:71

WW21AxiomaMH.Internet Software

& Services

0.001 �0.003 0.537 0.001 0.594 1.782 t13:72

WW21AxiomaMH.Electronic

Equipment, Instruments &

Components

0.000 �0.006 0.519 0.001 0.793 2.380 t13:73

WW21AxiomaMH.Consumer

Finance

0.000 �0.001 0.519 0.001 0.547 1.642 t13:74

WW21AxiomaMH.Diversified

Telecommunication Services

0.000 0.022 0.481 0.002 0.157 0.471 t13:75

WW21AxiomaMH.Containers &

Packaging

0.000 0.003 0.574 0.001 0.533 1.598 t13:76

WW21AxiomaMH.Professional

Services

0.000 0.001 0.537 0.001 0.432 1.297 t13:77

WW21AxiomaMH.Health Care

Technology

0.000 0.007 0.315 0.001 0.254 0.761 t13:78

WW21AxiomaMH.Aerospace &

Defense

0.000 �0.007 0.481 0.001 0.180 0.539 t13:79

WW21AxiomaMH.Commercial

Banks

0.000 0.003 0.472 0.001 0.161 0.484 t13:80

WW21AxiomaMH.Office

Electronics

0.000 �0.005 0.528 0.000 0.420 1.260 t13:81

WW21AxiomaMH.Hotels,

Restaurants & Leisure

0.000 0.005 0.583 0.001 0.165 0.494 t13:82

WW21AxiomaMH.Software 0.000 �0.033 0.463 0.003 0.053 0.159 t13:83

WW21AxiomaMH.Computers &

Peripherals

0.000 �0.017 0.463 0.002 0.057 0.171 t13:84

WW21AxiomaMH.Textiles, Apparel

& Luxury Goods

0.000 �0.002 0.593 0.001 0.215 0.646 t13:85

WW21AxiomaMH.Construction &

Engineering

0.000 �0.004 0.472 0.000 0.296 0.889 t13:86

WW21AxiomaMH.Food Products 0.000 �0.010 0.491 0.001 0.103 0.308 t13:87

WW21AxiomaMH.Construction

Materials

0.000 0.000 0.509 0.000 0.138 0.414 t13:88

WW21AxiomaMH.Multiline Retail 0.000 0.001 0.472 0.001 0.039 0.116 t13:89

0.000 �0.008 0.519 0.001 0.048 0.143 t13:90

(continued)
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t13:91 Table 7.13 (continued)

Contribution

Avg.

Wtd. Exp. HR Risk IR T-Statt13:92

WW21AxiomaMH.Air Freight &

Logistics

WW21AxiomaMH.Water Utilities 0.000 0.001 0.380 0.000 0.012 0.037t13:91

WW21AxiomaMH.Household

Durables

0.000 0.002 0.509 0.001 0.005 0.016t13:92

WW21AxiomaMH.Semiconductors

& Semiconductor Equipment

0.000 �0.011 0.509 0.002 �0.018 �0.054t13:93

WW21AxiomaMH.Building

Products

0.000 0.004 0.500 0.001 �0.121 �0.363t13:94

WW21AxiomaMH.Leisure

Equipment & Products

0.000 0.000 0.546 0.000 �0.246 �0.739t13:95

WW21AxiomaMH.Electrical

Equipment

0.000 �0.007 0.481 0.000 �0.189 �0.568t13:96

WW21AxiomaMH.Trading

Companies & Distributors

0.000 0.002 0.435 0.000 �0.244 �0.733t13:97

WW21AxiomaMH.Independent

Power Producers & Energy

Traders

0.000 0.002 0.417 0.000 �0.267 �0.802t13:98

WW21AxiomaMH.Diversified

Consumer Services

0.000 �0.001 0.509 0.000 �0.389 �1.167t13:99

WW21AxiomaMH.Industrial

Conglomerates

0.000 �0.013 0.463 0.001 �0.177 �0.531t13:100

WW21AxiomaMH.Personal Products 0.000 �0.006 0.481 0.000 �0.329 �0.986t13:101

WW21AxiomaMH.Health Care

Equipment & Supplies

0.000 0.003 0.472 0.001 �0.126 �0.377t13:102

WW21AxiomaMH.Energy

Equipment & Services

0.000 �0.009 0.481 0.002 �0.083 �0.250t13:103

WW21AxiomaMH.Gas Utilities 0.000 �0.001 0.481 0.000 �0.880 �2.641t13:104

WW21AxiomaMH.Distributors 0.000 0.010 0.435 0.001 �0.265 �0.795t13:105

WW21AxiomaMH.Household

Products

0.000 �0.017 0.565 0.002 �0.160 �0.480t13:106

WW21AxiomaMH.Life Sciences

Tools & Services

0.000 0.000 0.241 0.001 �0.377 �1.131t13:107

WW21AxiomaMH.Multi-Utilities 0.000 �0.006 0.556 0.001 �0.416 �1.247t13:108

WW21AxiomaMH.Automobiles 0.000 �0.004 0.537 0.001 �0.280 �0.839t13:109

WW21AxiomaMH.Diversified

Financial Services

0.000 0.015 0.500 0.001 �0.261 �0.783t13:110

WW21AxiomaMH.Commercial

Services & Supplies

0.000 0.009 0.528 0.001 �0.437 �1.311t13:111

WW21AxiomaMH.IT Services 0.000 �0.007 0.509 0.001 �0.288 �0.865t13:112

WW21AxiomaMH.Insurance 0.000 0.032 0.491 0.003 �0.128 �0.383t13:113

WW21AxiomaMH.Chemicals 0.000 0.005 0.463 0.001 �0.341 �1.023t13:114

WW21AxiomaMH.Oil, Gas &

Consumable Fuels

0.000 0.000 0.407 0.003 �0.123 �0.370t13:115

WW21AxiomaMH.Capital Markets 0.000 �0.005 0.463 0.001 �0.463 �1.389t13:116

WW21AxiomaMH.Road & Rail 0.000 �0.010 0.444 0.001 �0.505 �1.514t13:117

(continued)
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684Conclusions

685We addressed several issues in portfolio construction and management with the

686Guerard et al. (2012) USER data. First, we report that the Markowitz

687mean–variance (MV) optimization technique dominates the Enhanced Index-

688Tracking optimization technique at most security weight ranges. Second, we report

t13:118Table 7.13 (continued)

Contribution

Avg.

Wtd. Exp. HR Risk IR T-Stat t13:119

WW21AxiomaMH.Airlines �0.001 0.031 0.444 0.005 �0.120 �0.361 t13:120

WW21AxiomaMH.Specialty Retail �0.001 �0.004 0.463 0.002 �0.368 �1.104 t13:121

WW21AxiomaMH.Real Estate

Management & Development

�0.001 0.010 0.519 0.001 �0.708 �2.125 t13:122

WW21AxiomaMH.Beverages �0.001 �0.022 0.407 0.002 �0.566 �1.697 t13:123

WW21AxiomaMH.Biotechnology �0.001 0.033 0.509 0.005 �0.206 �0.619 t13:124

WW21AxiomaMH.Machinery �0.001 �0.009 0.343 0.001 �1.589 �4.767 t13:125

WW21AxiomaMH.Auto

Components

�0.001 0.002 0.509 0.001 �1.237 �3.712 t13:126

WW21AxiomaMH.Marine �0.001 0.016 0.426 0.004 �0.276 �0.828

WW21AxiomaMH.Paper & Forest

Products

�0.001 0.006 0.556 0.001 �0.799 �2.396

WW21AxiomaMH.Food & Staples

Retailing

�0.001 �0.025 0.500 0.002 �0.596 �1.789

WW21AxiomaMH.Electric Utilities �0.001 0.005 0.463 0.001 �1.008 �3.025

WW21AxiomaMH.Tobacco �0.001 �0.011 0.407 0.001 �1.051 �3.153
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689 that the Systematic Tracking Error optimization technique reported Wormald and

690 van der Merwe (2011) is very effective in USA and global markets. Finally, we

691 report that the Saxena and Stubbs (2012) Axioma Alpha Alignment Factor (AAF) is

692 appropriate for USER and GLER Data and that the Axioma Statistical Risk Model

693 dominates the Axioma Fundamental Model. The Markowitz approach to portfolio

694 construction and management is 60 years old and remains an integral tool of

695 investment research. Earnings forecasts play a very important role in identifying

696 mispriced securities.
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1Chapter 8

2Forecasting World Stock Returns

3and Improved Asset Allocation

4There is little evidence in the literature on whether predictability of stock returns

5leads to improved asset allocation and performance (Handa and Tiwari 2006).

6Handa and Tiwari (2006) found fixed results for forecasting 1-month-ahead results

7in the USA for 1954–2002 period; the past-returns model worked well from 1974 to

81988 and poorly from 1959 to 1973 and 1989 to 2002. There are mixed academic

9results for many financial tests. In this report, we show that it is possible to improve

10performance of a naı̈ve “60/40” model of equity and debt to a “60/40” model with

11Global Timing (GT). We create a Global Timing signal based on the 12-month

12moving average of the differential between the LIBOR rate and the All World

13Country (ACW) AU1index. If the predicted return signal, the differential of the 12-

14month average returns on the ACW, exceeds LIBOR by a statistically significant

15difference (one standard deviation), then a “buy” signal is created. If the predicted

J.B. Guerard, Jr., Introduction to Financial Forecasting in Investment Analysis,
DOI 10.1007/978-1-4614-5239-3_8, # Springer Science+Business Media New York 2013

217



16 return signal is less than �1.645, one standard deviation, then a “sell” decision is

17 made. A neutral position exists in the signal and no change is made. AU2
1

18 As with Handa and Tiwari (2006), we restrict our investment choices to a

19 relatively riskless asset, LIBOR, or an investment in ACWG securities. We test

20 the model on ACW index and implement on the ACW or ACWG indexes. We are a

21 growth manager and use the constituent securities in the ACWG index. The

22 asset allocation benchmark is a “60/40” portfolio invested in 60 percent in a passive

23 basket of ACW securities. If the Tactical Asset Allocation (TAA) signal exceeds

24 1.645, then we buy. If the TAA signal is less than�1.645, then we sell. How can we

25 implement such a strategy in a long-only investment portfolio? As with the

26 McKinley Capital Management (MCM) “Global Alpha-Engineering a Dynamic

27 Momentum” strategy, we may vary the portfolio lambda, the measure of the

28 return–risk preference of the asset manager. If the TAA signal exceeds 0.645,

1A similar signal was developed to investigate the relationship between Euro LEI and the GEM2

factor returns. For instance, suppose that a rise in the LEI one month could be associated with a rise

in a GEM2 factor return three months later. An investor might then profit by taking a long position

in the factor whenever the three-month lagged LEI were positive. One can use the Euro area

Leading Economic indicator, LEI, series published by The Conference Board (TCB). LetLEIðtÞbe
the LEI level at the end of month t. Generally, these values are published with a 1- or 2-month lag.

The “return” to the LEI over month t is then given by

Lt ¼ LEIðtÞ � LEIðt� 1Þ
LEIðt� 1Þ : (8.1)

The lagged correlation between the GEM2 factor return and the LEI return is

rmk ¼ corr f Pkt ;Lt�m

� �
; (8.2)

where f Pkt is the pure return to factor k over period t, and m is the number of lags in months.

Optimal portfolios are created using the MSCI Barra GEM2 risk model, the premier institutional

asset manager portfolio management, and control system. The GEM2 model, described in

Menchero et al. (2010), estimates a multifactor risk model composed of eight factors: the world,

value, growth, momentum, liquidity, size, size nonlinearity, and leverage. The GEM2Model is the

global equivalent of the USE3 model used in Chap. 6. The Barra model allows the asset manager to

specifically target desired portfolio exposures to accommodate client needs and expectations, such

as having an exposure to momentum and not necessarily having other exposures. Simple factor

portfolios have unit exposure to the particular factor, and nonzero exposure to other factors. Pure

factor portfolios have unit exposure to the particular factor, and zero exposure to all other factors.

Optimal factor portfolios have the minimum risk portfolio with unit exposure to the factor.

Menchero et al. (2012) reported the strongest positive correlation that suggests a positive relation-

ship between changes in the LEI and corresponding changes in Momentum six months later. A

momentum-timing signal is created in which if an increase in 6-month average change in LEI

exceeds 1.50 standard deviations, then one becomes aggressive with respective to momentum. One

sells momentum if the 6-month average change in momentum is less than 1.50 standard deviations.

We also present the cumulative performance of the pure Momentum factor, as well as the Euro LEI

series. The momentum timing returns have been scaled to have the same realized volatility as the

pure momentum factor over the 13-year period. Menchero et al. (2012) reported that the momen-

tum timing strategy greatly outperforms the pure momentum strategy over this sample period, with

the former climbing more than 60 %, compared to only 20 % return for the pure factor.
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29then we implement a portfolio lambda of 200, leading to an aggressive return-to-

30risk portfolio. If the TAA signal is less than�1.645, then we implement a lambda of

3110, indicating a relatively passive return-to-risk portfolio. If the TAA signal is

32neutral, then we use a lambda of 75. We use MQ, a quantitative-based strategy

33described in the MCM “Global Alpha” research report, as the portfolio expected

34return.

35An investor can purchase instruments or ETFs to produce a “60/40” return for

36the February 1997–October 2011 period. We ran the simulations from January 1997

37to October 2011, varying the portfolio returns using monthly signals and targeting

38the All Country World Growth (ACWG) Index. We measure the performance of the

39simulations from January 2002 to October 2011, the period of the Global (GEM2)

40Model. The TAA signals portfolio produces statistically significant total active

41returns, see Table 8.1.

42Had an investor invested in a “60/40” strategy, the mean monthly return of 1.185

43percent for January 2002–October 2011 exceeds the ACWG Index return of 0.506

t2:1Table 8.2 Strategy summary, January 2002–October 2011

Cumulative Mean t2:2

Strategy Wealth ratio Monthly return Sharpe ratio t2:3

"60/40" 3.804 1.185 1.143 t2:4

ACWG index 1.566 0.506 0.88 t2:5

"60/40" GT 5.826 1.567 1.367

t1:1Table 8.1 Attribution report of the TAA signal portfolios, 1/2002–10/2011

Annualized contributions to total return t1:2

Source of return

Contribution

(% return)

Risk

(% std. dev.)

Info

ratio T-stat t1:3

1. Risk free 1.86 t1:4

2. Total benchmark 4.67 17.46 t1:5

3. Currency selection 3.67 3.52 1.09 3.40 t1:6

4. Cash-equity policy 0.00 0.00 t1:7

5. Risk indices 6.16 4.36 1.23 3.86 t1:8

6. Industries �0.38 2.56 �0.14 �0.44 t1:9

7. Countries 0.97 5.07 0.19 0.61 t1:10

8. World equity 0.00 0.00 t1:11

9. Asset selection 1.16 3.22 0.41 1.29 t1:12

10. Active equity

[5 + 6 + 7 + 8 + 9]

7.91 7.60 0.96 3.02 t1:13

11. Trading t1:14

12. Transaction cost �4.25 t1:15

13. Total active

[3 + 4 + 10 + 11 + 12]

7.63 8.22 0.93 2.91 t1:16

14. Total managed [2 + 13] 12.29 19.77 t1:17
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44 for the corresponding period. The “60/40”GT strategy produces a monthly return of

45 1.567 (including transactions costs of 150 basis points each way). The TAA signals

46 portfolio outperforms the market and the “60/40” strategy in producing higher

47 Sharpe Ratios. Thus, the TAA portfolios produce higher returns for a given level

48 of risk than the “60/40” strategy and the ACWG index (Table 8.2) AU3.

49 Summary and Conclusions

50 Stock return expectations can be used to vary the aggressiveness of equity

51 portfolios that can lead to Tactical Asset Allocation decisions that can outperform

52 a naı̈ve “60/40” strategy.
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1Chapter 9

2Summary and Conclusions

3The forecasting of earnings per share, eps, is a most important input to an investment

4strategy. There is a tremendous literature regarding forecasting of corporate eps and

5whether the forecasts are more accurate than a random walk or a random walk with

6drift. Much of the literature can be summarized as follows: (1) analysts’ forecasts are

7not statistically different from a random walk with drift model; that is, analysts’

8forecasts can be approximated with a first-order exponential smoothing model

9forecast; (2) analysts’ forecasts are biased; analysts’ forecasts are optimistic; (3)

10analysts’ forecast revisions and the direction of their revisions are more highly

11correlated with stock returns than earnings forecasts themselves; (4) earnings

12forecasts are highly statistically significant in forecasting total stock returns; (5)

13earnings forecasts, revisions, and direction of revisions can be combined with

14fundamental data, such as earnings, book value, cash flow, sales, these variables

15relative to their histories, and price momentum strategies to identify mispriced

16stocks; (6) smaller capitalized stocks are more mispriced than larger capitalized

17stocks; and (7) international and global stocks are more mispriced than the US

18stocks.

19We introduced the reader to regression models and various estimation

20procedures. We have illustrated regression estimations by modeling consumption

21functions and the relationship between real GDP and The Conference Board

22Leading Economic Indicators (LEI). We estimated regressions using EViews,

23SAS, and automatic modeling in Oxmetrics. There are many advantages with the

24various regression software with regard to ease of use, outlier estimations, collin-

25earity diagnostics, and automatic modeling procedures.

26We introduced reader to the time series work of Professors box and Jenkins and

27examined the predictive information in The Conference Board LEI for the USA, the

28UK, Japan, and France. We find that The Conference Board LEI and FIBER short-

29term LEI are statistically significant in modeling the respective real GDP changes

30during the 1970–2000 period. One rejects the null hypothesis of no association

31between changes in the LEI and changes in real GDP in the USA, and the G7

32nations. If one uses a rolling 32 quarter estimation period and a one-period-ahead
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33 forecasting root mean square error calculation, the LEI forecasting errors are not

34 significantly lower than the univariate ARIMA model forecasts.

35 We used two case studies to illustrate the effectiveness of regression modeling.

36 Regression analysis offered marginal improvement in the case of combining GNP

37 forecasts, but offered substantial improvement in identifying financial variables

38 associated with security returns. We introduced the reader to a stock selection

39 model that combined earnings forecasts, fundamental variables derived from bal-

40 ance sheet and income statement analysis, and price momentum variables. The

41 regression-based United States Expected Returns (USER) Model was highly statis-

42 tically significant in construction. Regression techniques addressing outliers and

43 multicollinearity problems in the USER Model outperformed equally weighted

44 strategies in stock selection modeling.

45 A case study of mergers was introduced so that the reader could examine

46 Granger causality testing in detail. Mergers were modeled as a function of the

47 LEI and stock prices. We found causality in the Chan and Lee (1990) AU1test in that

48 LEI and stock prices caused mergers.

49 The Barra Aegis system has been the industry standard for portfolio construc-

50 tion, management, and measurement for almost 40 years. We demonstrated the

51 effectiveness of the Barra Aegis system to create investment management strategies

52 to produce portfolios and attribute portfolio returns to the Barra multifactor risk

53 model during the December 1979–2009 period. We find additional evidence to

54 support the use of MSCI Bara multifactor models for portfolio construction and risk

55 control. We report two results: (1) a composite model incorporating AU2fundamental

56 data, such as earnings, book value, cash flow, and sales, with analysts’ earnings

57 forecast revisions and price momentum variables to identify mispriced securities;

58 (2) the returns to a multifactor risk-controlled portfolio allow us to reject the null

59 hypothesis that the results are due to data mining. We develop and estimate three

60 levels of testing for stock selection and portfolio construction. The use of multifac-

61 tor risk-controlled portfolio returns allows us to reject the null hypothesis that the

62 results are due to data mining. The anomalies literature can be applied in real-world

63 portfolio construction.

64 We addressed several additional issues in portfolio construction and manage-

65 ment with the USER data. First, we report that the Markowitz Mean-Variance (MV)

66 optimization technique dominates the Enhanced Index-Tracking optimization tech-

67 nique at most security weight ranges. Second, we report that the Systematic

68 Tracking Error optimization technique reported by Wormald and van der AU3Merwe

69 (2012) is very effective in the US and Global markets. Finally, we report that

70 the Saxena and Stubbs (2012) AU4Axioma Alpha Alignment Factor (AAF) is appropri-

71 ate for USER and global (GLER) Data and that the Axioma Statistical Risk Model

72 dominates the Axioma Fundamental Model. The Markowitz approach to portfolio

73 construction and management is sixty years old and remains an integral tool of

74 investment research. Earnings forecasts play a very important role in identifying

75 mispriced securities.
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76Finally, stock return expectations can be used to vary the aggressiveness of

77equity portfolios that can lead to Tactical Asset Allocation decisions that can

78outperform a naı̈ve “60/40” strategy.

79Forecasting earnings is an integral component to stock selection modeling and

80investment analysis.
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