Introduction to Financial Forecasting in Investment ${ }_{1}$ Analysis

John B. Guerard, Jr.

Introduction to Financial Forecasting in Investment 5 Analysis

John B. Guerard, Jr.
McKinley Capital Management, Inc.
Anchorage, AK, USA

ISBN 978-1-4614-5238-6 ISBN 978-1-4614-5239-3 (eBook)
DOI 10.1007/978-1-4614-5239-3
Springer New York Heidelberg Dordrecht London
Library of Congress Control Number: 2012952930
(C) Springer Science+Business Media New York 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper
Springer is part of Springer Science+Business Media (www.springer.com)

Preface

An Introduction to Financial Forecasting 39 in Investment Analysis 40

The objective of this proposed text is a $250-300$ page introductory financial 41 forecasting text that exposes the reader to applications of financial forecasting 42 and the use of financial forecasts in making business decisions. The primary 43 forecasts examined in this text are earnings per shares (eps). This text will make 44 extensive use of I/B/E/S data, both historic income statement and balance sheet 45 data and analysts' forecasts of eps. We calculate financial ratios that are useful in 46 creating portfolios that have generated statistically significant excess returns in the 47 world of business. The intended audience is investment students in universities and 48 investment professionals who are not familiar with many applications of financial 49 forecasting. This text is a data-oriented text on financial forecasting, understanding 50 financial data, and creating efficient portfolios. Many regression and time series 51 examples use E-Views, OxMetrics, Scientific Computing Associates (SCA), and 52 SAS software.

The first chapter is an introduction to financial forecasting. We tell the reader 54 why one needs to forecast. We introduce the reader to the moving average and 55 exponential smoothing models to serve as forecasting benchmarks. 56

The second chapter introduces the reader to the regression analysis and forecasting. 57 In the third chapter, we use regression analysis to examine the forecasting effective- 58 ness of the composite index of leading economic indicators, LEI. Economists have 59 constructed leading economic indicator series to serve as a business barometer of the 60 changing US economy since the time of Wesley C. Mitchell (1913). The purpose of 61 this study is to examine the time series forecasts of composite economic indexes, 62 produced by The Conference Board (TCB) and test the hypothesis that the leading 63 indicators are useful as an input to a time series model to forecast real output in the 64 USA. Economic indicators are descriptive and anticipatory time-series data are used to 65 analyze and forecast changing business conditions. Cyclical indicators are compre- 66 hensive series that are systemically related to the business cycle.

The third chapter introduces the reader to the forecasting process and illustrates exponential smoothing and (Box-Jenkins) time series model estimations and forecasts using the US Real Gross Domestic Product (GDP). The chapter is a "hands-on" exercise in model estimating and forecasting. In this chapter, we examine the forecasting effectiveness of the composite index of leading economic indicators, LEI. The leading indicators can be an input to a transfer function model of real Gross Domestic Product, GDP. The transfer function model forecasts are compared to several naïve models in terms of testing which model produces the most accurate forecast of real GDP. No-change forecasts of real GDP and random walk with drift models may be useful as a forecasting benchmark (Mincer and Zarnowitz 1969; Granger and Newbold 1977).

The fourth chapter addresses the issue of composite forecasting using equally weighted and regression-weighted models. We discuss the use of GDP forecasts. We analyze a model of United States equity returns, the USER Model, to address issues of outliers and multicollinearity. The USER Model combines Graham \& Dodd variables, such as earnings, book value, cash flow, and sales with analysts' revisions, breadth, and yields and price momentum to rank US equities and identify undervalued securities. Expected returns modeling has been analyzed with a regression model in which security returns are functions of fundamental stock data, such as earnings, book value, cash flow, and sales, relative to stock prices, and forecast earnings per share (Fama and French 1992, 1995; Bloch et al 1993; Haugen and Baker 2010; Stone and Guerard 2010).

In Chap. 5, we expand upon the time series models of Chap. 2 and introduce the reader to multiple time series model and Granger causality testing as in the Ashley, Granger, and Schmalensee (1980) and Chen and Lee (1990) tests. We illustrate causality testing with mergers, stock prices, and LEI data in the USA in the postwar period.

In Chap. 6, we examine analysts' forecasts in portfolio construction and management. We use the Barra risk optimization analysis system, the standard portfolio risk model in industry, to create efficient portfolios. The Barra Aegis system produces statistically significant asset selection using the USER Model for the 1980-2009 period.

In Chap. 7, we show how US, Non-US, and Global portfolio returns can be enhanced by use of eps forecasts and revisions. We use the Sungard APT and Axioma systems to create efficient portfolios using principal components-based risk models.

We illustrate global market timing and tactical asset management in Chap. 8. The ability to forecast market shifts allows the manager to increase his or her risk acceptance and enhance the risk-return tradeoff.

We summarize our processes, tests, and results in Chap. 9. We produce conclusions that are relevant to the individual investor and portfolio manager.

The author acknowledges the support of his wife of 30 -plus years, Julie, and their three children, Richard, Katherine, and Stephanie. The author gratefully acknowledges the comments and suggestions of several gentlemen who each read several chapters of this monograph. Professors Derek Bunn, of the London

Business School, Martin Gruber, of New York University, Dimitrios Thomakos, of 113 the University of Peloponnese (Greece). Any errors remaining are the responsibility 114 of the author.

Contents

1 Forecasting: Its Purpose and Accuracy 000118
1.1 Forecast Rationality 000119
1.2 Absolute and Relative Forecast Accuracy 000120
References 000121
2 Regression Analysis and Forecasting Models 000122
2.1 Examples of Financial Economic Data. 000123
2.2 Autocorrelation 000124
2.3 Multiple Regression 000125
2.4 The Conference Board Composite Index of Leading 126
Economic Indicators and Real US GDP Growth: 127
A Regression Example 000128
2.5 Summary 000129
References 000130
3 An Introduction to Time Series Modeling 131
and Forecasting. 000132
3.1 Basic Statistical Properties of Economic Series 000133
3.1.1 The Autoregressive and Moving 134
Average Processes 000135
3.2 ARMA Model Identification in Practice 000136
3.3 Modeling Real GDP: An Example 000137
3.4 Leading Economic Indicators and Real GDP Analysis: 138
The Statistical Evidence, 1970-2002 000139
3.5 US and G7 Post-sample Real GDP Forecasting Analysis 000140
3.6 Summary 000141
References 000142
4 Regression Analysis and Multicollinearity: Two Case Studies 000
4.1 The First Example: Combining GNP Forecasts 000
4.2 The Second Example: Modeling the Returns of the US Equities 000
4.3 Summary and Conclusions 000
References 000
5 Transfer Function Modeling and Granger
Causality Testing 000
5.1 Testing for Causality: The Ashley et al. (1980) Test 000
5.2 Quarterly Mergers, 1992-2011: Automatic Time Series Modeling and an Application of the Ashley et al. (1980) Test 000
5.3 Causality Testing: An Alternative Approach by Chen and Lee 000
5.4 Causality Analysis of Quarterly Mergers, 1992-2011: An Application of the Chen and Lee Test 000
5.5 Money Supply and Stock Prices, 1967-2011 000
References 000
6 A Case Study of Portfolio Construction Using the USER Data and the Barra Aegis System 000
6.1 The BARRA Model: The Primary Institutional Risk Model 000
6.2 Stock Selection Modeling 000
6.3 Efficient Portfolio Construction Using the Barra Aegis System 000
6.3.1 DMC Model III Calculation 000
6.4 Conclusions 000
References 000
7 More Markowitz Efficient Portfolios Featuring the USERData and an Extension to Global Dataand Investment Universes000
7.1 Constructing Efficient Portfolios 000
7.2 Extensions to the Traditional Mean-Variance Model 000
7.3 Portfolio Construction, Management, and Analysis:
An Introduction to Tracking Error at Risk 000
7.4 Portfolio Construction, Management, and Analysis: An Introduction to Systematic Tracking Error Optimization 000
7.5 Markowitz Restored: The Alpha Alignment Factor Approach 000

Author Queries

Chapter No.:
 192189_1_En

Query Refs.	Details Required	Author's response
AU1	Please consider rephrasing the sen- tence "This text is ..." for clarity.	

Chapter 1
 Forecasting: Its Purpose and Accuracy

The purpose of this monograph is to concisely convey forecasting techniques to 3 applied investment analysis. People forecast when they make an estimate as to the 4 future value of a time series. That is, if I observe that IBM has a stock price of 5 $\$ 205.48$, as of March 23, 2012, and earned an earnings per share (eps) of $\$ 13.06$ for 6 fiscal year 2011, then I might wonder at what price IBM would trade for on 7 December 31, 2012, if it achieved the $\$ 14.85$ eps that 21 analysts, on average, 8 expect it to earn in 2012 (source: MSN, Money, March 23, 2012, 1:30 p.m., AST). 9 The low estimate is $\$ 14.18$ and the high estimate is $\$ 15.28$. Ten stock analysts 10 currently recommend IBM as a "Strong Buy," one as a "Moderate Buy," and ten 11 analysts recommend "Hold." Moreover, if IBM achieves its forecasted $\$ 16.36$ eps 12 average estimate for December 2013, when could be its stock price and should an 13 investor purchase the stock? One sees several possible outcomes; can IBM achieve 14 its forecasted eps figure? How accurate are the analysts' forecasts? Second, should 15 an investor purchase the stock on the basis of an earnings forecast? Is there a 16 relationship between eps forecasts and stock prices? How accurate is it necessary 17 for analysts to be for investors to make excess returns (stock market profits) trading 18 on the forecasts?

Granger (1980a, b) differentiated between an event outcome such as to forecast 20 IBM eps (at a future date), event time, such as whether the US economy will 21 completely recover from the 2008 to 2009 recession and IBM realize its forecasted 22 eps, and time series forecasts, generating the forecasts and confidence intervals of 23 IBM earnings at future dates. In this monograph, we concentrate on using eps 24 forecasts for IBM and approximately 16,000 other firms in stock selection modeling 25 and portfolio management and construction strategies to generate portfolio returns 26 that outperform the portfolio manager benchmark. To access the effectiveness of 27 producing and using forecasts, it is necessary to establish forecast benchmarks, 28 measures of forecast accuracy, and methods to test for effective forecast 29 implementation.

One can establish several reasonable benchmarks for forecasting. First, the use 31 of a no-change model, in which last period's value is used as the forecast for the 32 current period forecast, has a long and well-recognized history [Theil (1966) 33
and Mincer and Zarnowitz (1969)]. Second, one can establish several criteria for forecast accuracy. The forecast error, e_{t}, is equal to the actual value, A_{t}, less the forecasted value, F_{t}. One can seek to produce and use forecasts that have the lowest errors on the following measurements:

$$
\begin{gathered}
\text { Mean Error }=\frac{\Sigma_{\mathrm{t}=1}^{\mathrm{T}} \mathrm{e}_{\mathrm{T}}}{\mathrm{~T}} ; \\
\text { Mape }=\text { Mean Absolute Percentage Error }=\frac{\Sigma_{\mathrm{t}=1}^{\mathrm{T}}\left|\mathrm{e}_{\mathrm{t}}\right|}{\mathrm{T}} ;
\end{gathered}
$$

and

$$
\text { Mean Squared Forecast Error }=\text { MSFE }=\sum_{t=1}^{T} e_{t}^{2} \text {. }
$$

There are obviously advantages and disadvantages to these measures. First, in the mean error, small positive and negative values may "cancel" out implying that the forecasts are "perfect." Makridakis et al. (2000) remind us that the mean error is only useful in determining whether the forecaster over-forecasts, producing positive forecast errors; that is, the forecaster has a positive forecast bias. The MAPE is the most commonly used forecast error efficiency criteria [Makridakis et al. (1984)]. The MAPE recognizes the need of the forecast to be as close as possible to the realized value. Thus, the sign of the forecast error, whether positive or negative, is not the primary concern. Finally, the mean squared forecast error is assuming a quadratic loss function, that is, a large positive forecast error is not preferred to a large negative forecast error. In this monograph, we examine the implications of the three primary measures of forecast accuracy. We are concerned with two types of forecasts: the economy (the United States and the World, particularly the Euro zone) and analysts forecasts of corporate eps. Why? We believe, and will demonstrate, that a reasonable economic forecast of the direction of the economic strength is significant in allowing an asset manager or an investor to participate in economic growth. Second, we find that firms achieving the highest growth in eps generate the highest stock holder returns during the 1980-2009 period; moreover, we will demonstrate that the securities that achieve the highest eps growth and hence returns are not those forecast to have the highest eps, but are not that have the highest eps forecast revisions and that it is equally important for analysts to agree on the eps revisions. That is, the larger the number of analysts that raise their respective eps forecasts, the highest will be stockholder returns.

The purpose of this monograph is to introduce the reader to a variety of financial techniques and tools to produce forecasts, test for forecasting accuracy, and demonstrate the effectiveness of financial forecasts in stock selection, portfolio construction and management, and portfolio attribution. We believe that financial markets are very near to being efficient, but statistically significant excess returns can be earned.

Let us discuss several aspects to forecast accuracy: forecast rationality, turning 68 point analysis, and absolute and relative accuracy.

Forecast Rationality

One of the most important aspects of forecast accuracy is forecast rationality. 71 Clements and Hendry (1998) discuss rationality in several levels. "Weak" rational- 72 ity is associated with the concept of biasedness. A test of unbiasedness is generally 73 written in the form

$$
\begin{equation*}
A_{t}=\alpha+\beta P_{t}+\varepsilon_{t} \tag{1.1}
\end{equation*}
$$

where
A_{t}, actual value at time $t ; \quad 76$
P_{t}, predicted value (forecast) at time $t ; ~ 77$
ε_{t}, error term at time t. 78
In (1.1), we have only assumed a one-step-ahead forecast horizon. One can 79 replace t with $t+k$ to address the issues of $k=$ Period ahead periods. Unbiasedness 80 is defined in (1.1) with the null hypothesis that $\alpha=0$ and $\beta=1$. The requirement 81 for unbiasedness is that $E\left(\varepsilon_{t}\right)=0$. In expectational terms

$$
\begin{equation*}
E\left[A_{t}\right]=\alpha+\beta E\left[P_{t}\right] \tag{1.2}
\end{equation*}
$$

One expects $\beta=1$ and $\alpha=0$, a sufficient, but not necessary condition for 83 unbiasedness. "Strong" rationality or efficiency requires that the forecast errors are 84 uncorrelated with other data or information available at the time of the forecast, 85 Clements and Hendry (1998).

Much of forecasting analysis, measurement, and relative accuracy was devel- 87 oped in Theil (1961) and Mincer and Zarnowitz (1969). Theil discussed several 88 aspects of the quality of forecasts. Theil (p. 29) discussed the issue of turning points, 89 or one-sided movements, correctly. Theil produced a two-by-two dichotomy of 90 turning point forecasting. The Theil turning point analysis is well worth reviewing. 91 A turning point is correctly predicted; that is, a turning point is predicted and an 92 actual turning point occurs (referred as " i "). In a second case, a turning point is 93 predicted, but does not occur ("ii"). In the third case, a turning point actually occurs, 94 but was not predicted ("iii"); the turning point is incorrectly predicted. In the fourth 95 and final case, a turning point is not predicted and not recorded. Thus, " i " and "iv" 96 are regarded as forecast successes and "ii" and "iii" are regarded as forecast 97 failures. The Theil turning point table is written as 98

Actual turning points		Predicted turning points	99
	Turning point	No turning point	
Turning point	i	iii	100
No turning point	ii	iv	101

The Theil turning point failure measures:

$$
\phi_{1}=\frac{i i i}{i+i i} ; \quad \phi_{2}=\frac{i i i}{i+i i i} .
$$

Small values of ϕ_{1} and ϕ_{2} indicate successful turning point forecasting. The turning point errors are often expressed graphically, where

Chart 1.

Regions A and D represent overestimates of changes whereas regions B and C represent underestimates of changes. The 45° line represents the line of perfect forecasts. Elton et al. (2009) make extensive use of the Theil graphical chart in their analysis of analysts' forecasts of eps.

A line of perfect forecasting is shown in Chart 2, where $U=0$.
Chart 2.

A line of maximum inequality is shown in Chart 3 where $U=1$.
Chart 3.

The forecasters in Chart 3 are very bad (the worst possible). Intermediate grades $112 \stackrel{\text { E }}{\text { E }}$ of forecasting are shown in Chart 4 and Chart 5 where the respective μ are small and 113 large, respectively.

Chart 5.

Theil (1961, p. 30) analyzed the relationship between predicted and actual 117 values of individual i.

$$
\begin{equation*}
\mathrm{P}_{i}=\alpha+\beta A_{i}, \quad \beta>0 \tag{1.3}
\end{equation*}
$$

118 Perfect forecasting requires that $\alpha=0$ and $\beta=1$. An alternative representation 119 of (1.3) can be represented by the now familiar inequality coefficient, now known 120 as Theil's U, or Theil Inequality coefficient, TIC.

$$
\begin{equation*}
\frac{\mu=\sqrt{\frac{1}{T} \Sigma\left(P_{i}-A_{i}\right)^{2}}}{\sqrt{\frac{1}{T} \Sigma P_{i}^{2}}+\sqrt{\frac{1}{T} \Sigma A_{i}^{2}}} \tag{1.4}
\end{equation*}
$$

121 If $U=0$, then $P_{i}=A_{i}$ for all I, and there is perfect forecasting. If $U=1$, then 122 the TIC reaches its "maximum in equality" and this represents very bad forecasting. 123 Theil broke down the numerator of μ into sources or proportions of inequality.

$$
\begin{equation*}
\frac{1}{T} \Sigma\left(P_{i}-A_{i}\right)^{2}=(\bar{P}-\bar{A})^{2}+\left(S_{P}-S_{A}\right)^{2}+2(1-r) S_{P} S_{A} \tag{1.5}
\end{equation*}
$$

124 where
$\bar{P}=$ mean of predicted values;
$\bar{A}=$ mean of actual values; 126
$S_{\mathrm{P}}=$ standard deviation of predicted values; 127
$S_{\mathrm{A}}=$ standard deviation of actual values; 128
and 129
$r=$ correlation coefficient of predicted and actual values. 130
Let D represent the denominator of (1.4). 131

$$
\begin{align*}
& U_{M}=\frac{\bar{P}-\bar{A}}{D} \\
& U_{S}=\frac{S_{P}-S_{A}}{D} \\
& U_{C}=\frac{\sqrt{2(1-r) S_{P} S_{A}}}{D} \\
& U_{M}^{2}+U_{S}^{2}+U_{C}^{2}=U^{2} \tag{1.6}
\end{align*}
$$

The term U_{M} is a measure of forecast bias. The term U_{S} represents the variance 132 proportion and U_{C} represents the covariance proportion. U_{M} is bounded within plus 133 and minus 1 ; that is, $U_{\mathrm{M}}=1$ indicates no variation of P and A or perfect correlation 134 with slope of 1 .

$$
U^{M}=\frac{U^{2} M}{U^{2}} ; \quad U^{S}=\frac{U_{S}^{2}}{U^{2}}=U^{C}=\frac{U_{C}^{2}}{U^{2}}
$$

Theil refers to $U^{\mathrm{M}}, U^{\mathrm{S}}$, and U^{C} as partial coefficients of inequality due to unequal 1 central tendency, unequal variation, and imperfect correlation, respectively.

$$
\begin{equation*}
U^{M}+U^{S}+U^{C}=1 \tag{1.7}
\end{equation*}
$$

Theil (1961, p. 39) decomposes (1.5) into

$$
\begin{equation*}
\frac{1}{T} \Sigma\left(P_{i}-A_{i}\right)^{2}=(\bar{P}-\bar{A})^{2}+\left(S_{P}-S_{A}\right)^{2}+\left(1-r^{2}\right) S_{A}^{2} \tag{1.8}
\end{equation*}
$$

If a forecast is unbiased, then $E(\bar{P})=E(\bar{A})$ and, in the regression of

$$
A_{i}=P_{i}+U_{i}
$$

where $U_{i}=$ regression error term, the slope of A on P is $\frac{r S_{A}}{S_{P}} \cdot U^{2}=U_{M}^{2}+U_{R}^{2}+U_{D}^{2}, \quad 140$

141 where $U_{R}^{2}=\left(\frac{S_{P}-r S_{A}}{D}\right)^{2}$;

$$
U_{D}^{2}=\left(\frac{\sqrt{\left(1-r^{2}\right)} S_{A}}{D}\right)^{2}
$$

143 nonzero regression error terms (disturbances).

$$
U^{R}=\frac{U_{R}^{2}}{U^{2}} \quad \text { and } \quad U^{D}=\frac{U_{D}^{2}}{U^{2}}
$$

144 The U^{R} term is the regression proportion of inequality. The U^{D} term is the 145 disturbance proportion of inequality.

$$
U^{M}+U^{R}+U^{D}=1
$$

The modern version of the TIC is written as the Theil U as

$$
\begin{equation*}
U=\sqrt{\frac{\sum_{t=1}^{T-1}\left(\frac{F_{t+1}-Y_{t}-Y_{t+1}+Y_{t}}{Y_{t}}\right)^{2}}{\sum_{t=1}^{T-1}\left(\frac{Y_{t+1}-Y_{t}}{Y_{t}}\right)^{2}}} \tag{1.9}
\end{equation*}
$$

147 or

$$
U=\sqrt{\frac{\sum_{t=1}^{T-1}\left(F P E_{t+1}-A P E_{t+1}\right)^{2}}{\sum_{t=1}^{T-1}\left(A P E_{t+1}\right)^{2}}}
$$

148 where
149
150

$$
\begin{gathered}
F P E_{t+1}=\frac{F_{t+1}-Y_{t}}{Y_{t}^{t}-Y_{t}} \text { and } \\
A P E_{t+1}=\frac{Y_{t+1}}{Y_{t}}
\end{gathered}
$$

151 where $F=$ forecast and $A=$ Actual values,
152 where FPE is the forecast relative change and APE is the actual relative change.

153 Absolute and Relative Forecast Accuracy

154 Mincer and Zarnowitz (1969) built upon the TIC analysis and discussed absolute 155 and relative forecasting accuracy in a more intuitive manner.

Chart 6.

The line of perfect, LPF, is of course where $P=A$, as was the case with Theil. Mincer and Zarnowitz (1969) write the mean square error of forecast, M_{P}, as

$$
\begin{equation*}
M_{P}=E(A-P)^{2} \tag{1.10}
\end{equation*}
$$

where E denotes expected value. In the Mincer-Zarnowitz Prediction-Realization 159 diagram, shown in Chart 6 , the line $E-E^{\text {C }}$ denotes forecast bias. Thus, $E(A)-160$ $E(P)=E(U)$ denotes forecast bias.

Let us return for the actual-predicted value regression analysis:

$$
\begin{equation*}
A_{t}=P_{t}+u_{t} \tag{1.11}
\end{equation*}
$$

which is estimated with an ordinary least squares regression of
163

$$
\begin{equation*}
A_{t}=\alpha+\beta P_{t}+v_{t} \tag{1.12}
\end{equation*}
$$

It is necessary for the forecast error, u_{t}, to be uncorrelated with forecast values, $P_{t}, 164$ for the regression slope β to equal unity (1.0). The residual variance in the regression 165 $\sigma^{2}(v)$ equals the variance of the forecast error $\sigma^{2}(u)$. Forecasts are efficient if $\sigma^{2}(u) 166$ $=\sigma^{2}(v)$. If the forecast is unbiased, $\alpha=0$, and $\sigma^{2}(v)=\sigma^{2}(u)=M_{\mathrm{P}}$. 167
Mincer and Zarnowitz (1969) discuss economic forecasts in terms of predictions 168 of changes (not absolute levels). The mean square error is

$$
\begin{equation*}
\left(A_{t}-A_{t-1}\right)-\left(P_{t}-A_{t-1}\right)=A_{t}-P_{t}=u_{t} \tag{1.13}
\end{equation*}
$$

The relevant Mincer-Zarnowitz regression slope is

$$
\beta_{\Delta}=\frac{\operatorname{cov}\left(A_{t}-A_{t-1}, P_{t}-A_{t-1}\right)}{\sigma^{2}\left(P_{t}-A_{t-1}\right)}
$$

$$
\begin{equation*}
E\left|P_{t}-A_{t-1}\right|<E\left|A_{t}-A_{t-1}\right| \tag{1.14}
\end{equation*}
$$

175 or

$$
\begin{gather*}
E\left(P_{t}-A_{t-1}\right)^{2}<E\left(A_{t}-A_{t-1}\right)^{2} \\
{\left[E\left(P_{t}\right)-E\left(A_{t-1}\right)\right]^{2}+\sigma^{2}\left(P_{t}-A_{t-1}\right)<\left[E\left(A_{t}\right)-E\left(A_{t-1}\right)\right]^{2}+\sigma^{2}\left(A_{t}-A_{t-1}\right)^{2}} \tag{1.15}
\end{gather*}
$$

Underestimation of changes occurs if

$$
\begin{aligned}
& E\left(P_{t}\right)<E\left(A_{t}\right), \text { when } A_{t} \text { and } P_{t}>A_{t-1}, \\
& E\left(P_{t}\right)<E\left(A_{t}\right), \text { when } A_{t} \text { and } P_{t}<A_{t-1},
\end{aligned}
$$

177 and or

$$
\begin{equation*}
\sigma^{2}\left(P_{t}-A_{t-1}\right)<\sigma^{2}\left(A_{t}-A_{t-1}\right) \tag{1.16}
\end{equation*}
$$

178 In (1.16), when predictions of changes are efficient, $\beta_{\Delta}=1$, then $179 \sigma^{2}\left(A_{t}-A_{t-1}\right)=\sigma^{2}\left(P_{t}-A_{t-1}\right)+\sigma^{2}\left(U_{t}\right)$.
180 Mincer and Zarnowitz (1969) decomposed the mean square error to create an 181 index of forecasting quality, R_{M}. The index of forecasting quality is the ratio of the 182 mean square error of forecast and the mean square error of extrapolation, the 183 relative mean square error. If forecasts are "good" and are superior to extrapolated 184 values, then $0<R_{\mathrm{M}}<1$. If $R_{\mathrm{M}}>1$, then the forecast is inferior.

$$
\begin{equation*}
R_{M}=\frac{M_{P}}{M_{X}}=\frac{1-\frac{U_{X}}{M_{X}}}{1-\frac{U P}{M_{P}}} \times \frac{M_{P}^{C}}{M_{X}^{C}}=g R M^{C} \tag{1.17}
\end{equation*}
$$

85 If x is a best, unbiased, and efficient extrapolation then $M_{X}^{C}=M_{X}$ and $g=\frac{M_{P}}{M^{C} P}$ $186>1$ and $\mathrm{RM}^{\mathrm{C}} \leq$ RM. Mincer and Zarnowtiz found that autoregressive 187 extrapolations were not optimal; however, $\mathrm{RM}^{\mathrm{C}}<\mathrm{RM}$ in twelve of 18 cases. 188 Mincer and Zarnowitz found that inefficiency was primarily due to bias.

Mincer and Zarnowitz put for the r a theory that if RM_{C}, the forecast is superior 190 relative to an extrapolative forecast benchmark, then "useful autonomous informa191 tion enhanced the forecast." Autoregressive extrapolations showed substantial
improvement over naïve (average) models, and while not optimal, were thus more 192 efficient. A small number of lags produced satisfactory extrapolative benchmarks. 193

The Mincer-Zarnowitz approach was important, not only because of its no- 194 change benchmarks but (benchmark method of forecast) also because of its use of 195 an extrapolative forecast which should incorporate the history of the series. Mincer 196 and Zarnowitz concluded that the underestimation of changes reflects the conser- 197 vative prediction of growth rates in series with upward trends. 198

Granger and Newbold (1986) addressed two aspects of Mincer and Zarnowitz. 199 First in the Mincer and Zarnowitz forecast efficiency regression: 200

$$
\begin{equation*}
X_{t}=\alpha+\beta f_{t}+e_{t} . \tag{1.18}
\end{equation*}
$$

A forecast is efficient if $\alpha=0$ and $\beta=1$. However, the forecast, f_{t}, must be 201 uncorrelated with the error term, e_{t}. Granger and Newbold question this assumption 202 in practical applications. Second, it is essential the e_{t}, the error term be white noise- 203 suboptimal forecasts (whether one-step-ahead or k-step-ahead) are not white noise. 204 For a forecast to be optimal, the expected squared error must have zero mean and be 205 uncorrelated with the predictor-series. Unless the error term series takes on the 206 value "zero" with probability of one, the predictor series will have a smaller 207 variance than the real series. Second, random walk series appear to give reasonable 208 predictors of another independent random walk series. A random walk with drift 209 forecast is the approximate form as a first-order exponential smoothing model 210 shown in the appendix. We show the first-order and second-order exponential 211 smoothing model, the linear, trend, and seasonal models, the Holt (1957) and 212 AU8 Winters (1960), because Makridakis and Hibon (2000) report that simple, seasonal 213 AU9 exponential smoothing models with seasonality continue to outperform more 214 advanced time series models for large economic time series. Moreover, Makridakis 215 and Hibon (2000) report that equally weighted composite forecasts outperform 216 individual forecasts, a conclusion consistent with Makridakis and Hibon (1979) 217 AU10 and Makridakis et al. (1984). We review the Clemen and Winkler (1986) GNP 218 AU11 forecasts in Chap. 4 that examine composite forecasting. 219

Granger and Newbold $(1977,1986)$ restate the forecast and realization problem. 220 The series to be analyzed and forecast has a fixed mean and variance: 221

$$
\begin{aligned}
& E\left(x_{t}\right)=\mu_{x} \\
& E\left(x-\mu_{x}\right)^{2}=\sigma_{x}^{2} .
\end{aligned}
$$

The predictor series, f_{2}, has mean, f_{x}, variance σ_{x}^{2}, and a correlation ρ with x. The 222 expected squared forecast error is

$$
\begin{equation*}
E\left(x_{t}-f_{t}\right)^{2}=\left(\mu_{f}-\mu_{x}\right)^{2}+\left(\sigma_{f}-\rho \sigma_{x}\right)^{2}+\left(1-\rho^{2}\right) \sigma_{x}^{2} . \tag{1.19}
\end{equation*}
$$

A large correlation, ρ, minimizes the expected squared error. If

$$
\mu_{f}=\mu_{x} \text { and } \sigma_{f}=\rho \sigma_{x},
$$

and

$$
\begin{equation*}
D_{N}^{2}=(\bar{f}-\bar{x})^{2}+\left(s_{f}-r s_{x}\right)^{2}+\left(1-r^{2}\right) s_{x}^{2} \tag{1.21}
\end{equation*}
$$

then for optimal forecasts, the variance of the predictor series is less than the variance of the actual series. The population correlation coefficient is a measure of forecast quality. Granger and Newbold (1986) stated that it is "trivially easy" to obtain a predictor series "highly correlated" with the level of any economic time series.

Granger and Newbold (1986) restated Theil's decomposition of average squared forecast errors. Defining:

$$
\begin{equation*}
D_{N}^{2}=\frac{1}{T} \sum_{t=1}^{T}\left(x_{t}-f_{t}\right)^{2}=(\bar{f}-\bar{x})^{2}+\left(s_{f}-s_{x}\right)^{2}+2(1-r) s_{f} s_{x} \tag{1.20}
\end{equation*}
$$

If \bar{f} and \bar{x} are sample means of the predictor and predicted series, s_{f} and s_{x} are the respective sample standard deviations, and r is the sample correlation coefficient of x and f.

$$
\begin{gathered}
U^{m}=\frac{(\bar{f}-\bar{x})^{2}}{D_{N}^{2}}, \quad U^{s}=\frac{\left(s_{f}-s_{x}\right)^{2}}{D_{N}^{2}} \\
U^{c}=2(1-r) s_{f} s_{x} / D_{N}^{2}
\end{gathered}
$$

As with Theil, $U^{\mathrm{M}}+U^{\mathrm{S}}+U^{\mathrm{C}}=1$.
If x is a first-order autoregressive process,

$$
x_{t}=a x_{t-1}+\varepsilon_{t} .
$$

An optimal forecast, $f_{t}=a x_{t-1}$, produces $U^{\mathrm{M}}=0$, and $U^{\mathrm{S}}+U^{\mathrm{C}}=1$. A high correlation between predictor and predicted series will most likely not be achieved. The standard deviation of the forecast series is less than the actual series and U^{S} is substantially different from zero. Granger and Newbold suggest testing for randomness of forecast errors.

Cragg and Malkiel (1968) created a database of five forecasters of long-term earnings forecasts for 185 companies in 1962 and 1963. These five forecast firms included two New York City banks (trust departments), an investment banker, a mutual fund manager, and the final firm was a broker and an investment advisor. The Cragg and Malkiel (1968) forecasts were 5-year average annual growth rates. The earnings forecasts were highly correlated with one another; the highest paired correlation was 0.889 (in 1962) and the lowest paired correlation was 0.450 (in 1963) with most correlations exceeding 0.7. Cragg and Malkiel examined the earnings forecasts among eight "sectors" and found smaller correlation coefficients
among the paired correlations within sectors. The correlations of forecasts for 1963252 were very highly correlated with 1962 forecasts, exceeding 0.88 , for the forecasters. 253 Furthermore, Cragg and Malkiel found that the financial firms' forecasts of earnings 254 were lowly correlated, $0.17-0.45$, with forecasts created from time series 255 regressions of earnings over time. Cragg and Malkiel (1968) used the TIC (1966) 256 to measure the efficiency of the financial forecasts and found that the correlations of 257 predicted and realized earnings growth were low, although most were statistically 258 greater than zero. The TICs were large, according to Cragg and Malkiel (1968), 259 although they were less than 1.0 (showing better than no-change forecasting). The 260 TICS were lower (better) within sectors; the forecasts in electronics and electric 261 utility firms were best and foods and oils were the worst firms to forecast earnings 262 growth. Cragg and Malkiel (1968) concluded that their forecasts were little better 263 than past growth rates and that market price-earnings multiples were little better 264 predictors of growth than the financial analysts' forecasts. 265
The Cragg and Malkiel (1968) study was one of the first and most-cited studies 266 of earnings forecasts. 267

Elton and Gruber (1972) built upon the Cragg and Malkiel study and found 268 similar results. That is, a simple exponentially weighted moving average was a 269 better forecasting model of annual earnings than additive or multiplicative expo- 270 nential smoothing models with trend or regression models using time as an inde- 271 pendent variable. Indeed, a very good model was a naïve model, which assumed a 272 no-change in annual eps with the exception of the prior change that had occurred in 273 earnings. One can clearly see the random walk with drift concept of earnings in the 274 Elton and Gruber (1972). Elton and Gruber compared the naïve and time series 275 forecasts to three financial service firms, and found for their 180 firm sample that 276 two of the three firms were better forecasters than the naïve models. Elton et al. 277 (1981) build upon the Cragg and Malkiel (1968) and Elton and Gruber (1972) 278 results and create an earnings forecasting database that evolves to include over 279 16,000 companies, the Institutional Brokerage Estimation Services, Inc. (I/B/E/S). 280 Elton et al. (1981) find that earnings revisions, more than the earnings forecasts, 281 determine the securities that will outperform the market. Guerard and Stone (1992) 282 AU12 found that the $\mathrm{I} / \mathrm{B} / \mathrm{E} / \mathrm{S}$ consensus forecasts were not statistically different than 283 random walk with drift time series forecasts for 648 firms during the 1982-1985 284 period. Guerard and Stone ran annual eps forecast regressions for rationality and 285 rejected the null hypothesis that analysts' forecasts were rational. Analysts’ 286 forecasts were optimistic, producing negative intercepts in the rationality 287 regressions. Analysts' forecasts became less biased during the year and by the 288 third quarter of the year, the bias was essentially zero. Analysts' forecasts were 289 highly correlated with the time series forecasts and latent root regression, used in 290 Chap. 4, reduced forecasting errors in composite earnings forecasting models. Lim 291 (2001), using the I/B/E/S Detailed database from 1984 to December 1996, found 292 forecast bias associated with small and more volatile stocks, experienced poor past 293 stock returns, and had prior negative earnings surprises. Moreover, Lim (2001) 294 found that relative bias was negatively associated with the size of the number of 295 analysts in the brokerage firm. That is, smaller firms with fewer analysts, often with 296

297 more stale data, produced more optimistic forecasts. Keane and Runkle (1998) 298 found during the 1983-1991 period that analysts’ forecasts were rational, once 299 discretionary special charges are removed. The Keane and Runkle (1998) study is 300 one of the very few studies finding rationality of analysts' forecasts; most find 301 analysts to be optimistic. Further work by Wheeler (1994) will find that firms where 302 analysts agree with the direction of earnings revisions, denoted breadth, will 303 outperform stocks with lesser agreement of earnings revisions. Guerard et al. 304 (1997) combined the work of Elton et al. (1981) and Wheeler (1994) to create a 305 better earnings forecasting model, CTEF, which we use in Chaps. 6 and 7. The 306 CTEF variable continues to produce statistically significant excess return in 307 backtest and in identifying real-time security mispricing.

308 Appendix

309 Exponential Smoothing

310 The most simple forecast of a time series can be estimated from an arithmetic mean 311 of the data Davis and Nelson (1937). If one defines f as frequencies, or occurrences AU13 312 of the data, and x as the values of the series, then the arithmetic mean is

$$
\begin{equation*}
A=\frac{f_{1} x_{1}+f_{2} x_{2}+f_{3} x_{3}+\ldots+f_{t} x_{t}}{T} \tag{1.22}
\end{equation*}
$$

313 where $T=f_{1}+f_{2}+f_{3}+\ldots+f_{t}$.

$$
A=\frac{\Sigma f_{i} x_{i}}{T}
$$

314 Alternatively,

$$
\begin{gather*}
\frac{\Sigma f_{i}\left(x_{i}-x\right)}{T} \\
A=x+\frac{\Sigma f_{i}\left(x_{i}-x\right)}{T} . \tag{1.23}
\end{gather*}
$$

The first moment, mean, is

$$
\begin{gathered}
A=\frac{\Sigma f_{i} x_{i}}{T}=\frac{m_{1}}{m_{0}} \\
m_{0}=\sum f_{i}=T, m_{1}=\sum f_{i} x_{i} .
\end{gathered}
$$

If $x=0$, then

$$
\begin{gather*}
\sigma^{2}=\frac{\Sigma f_{i} x_{i}^{2}}{T}-A^{2} \\
\sigma^{2}=\frac{m_{2}}{m_{o}}-\frac{m_{1}^{2}}{m_{o}^{2}}=\left(m_{0} m_{2}-m_{1}^{2}\right) m_{0}^{2} \tag{1.24}
\end{gather*}
$$

Time series models often involve trend, cycle seasonal, and irregular 317 components, Brown (1963). An upward-moving or increasing series over time 318 AU14 could be modeled as

$$
\begin{equation*}
x_{t}=a+b t \tag{1.25}
\end{equation*}
$$

where a is the mean and b is the trend, or rate at which the series increases over 320 time, t. Brown (1963, p. 61) uses the closing price of IBM common stock as his 321 example of an increasing series. One could use a quadrant term, c. If c is positive, 322 then the series

$$
\begin{equation*}
x_{t}=a+b t+c t^{2} \tag{1.26}
\end{equation*}
$$

trend is changing toward an increasing trend, whereas a negative c denotes a 324 decreasing rate of trend, from upward to downward.

In an exponential smoothing model, the underlying process is locally constant, 326 $x_{t}=a$, plus random noise, ε_{t}.

$$
\begin{equation*}
x_{t}=a \varepsilon_{t} \tag{1.27}
\end{equation*}
$$

The average value of $\varepsilon=0$.
328
A moving average can be estimated over a portion of the data:

$$
\begin{equation*}
M_{t}=\frac{x_{1}+x_{t-1}+\ldots+x_{t-N}+1}{N} \tag{1.28}
\end{equation*}
$$

where M_{t} is the actual average of the most recent N observations.

$$
\begin{equation*}
M_{t}=M_{t-1}+\frac{x_{t}-x_{t-N}}{N} \tag{1.29}
\end{equation*}
$$

An exponential smoothing forecast builds upon the moving average concept. 331

$$
s_{t}(x)=\alpha x_{t}+(1-\alpha) s_{t-1}(x)
$$

where $\alpha=$ smoothing constant, which is similar to the fraction $1 / T$ in a moving 332 average.

$$
\begin{align*}
s_{t}(x) & =\alpha x_{t}+(1-\alpha)\left[\alpha x_{t-1}+(1-\alpha) s_{t-2}(x)\right] \\
& =\alpha \Sigma_{k o}^{t-1}(1-\alpha)^{k} x_{t-k}+(1-\alpha)^{t} x_{o}, \tag{1.30}
\end{align*}
$$

$$
\begin{equation*}
F_{t+1}=F_{t}+\alpha\left(y_{t}-F_{t}\right) \tag{1.31}
\end{equation*}
$$

340
341

Different values of α produce different mean squared errors. If one sought to minimize the mean absolute percentage error, the adaptive exponential smoothing can be rewritten as

$$
\begin{gather*}
F_{t+1}=\alpha y_{t}+(1-\alpha) F_{t} \tag{1.34}\\
\alpha t+1=\left|\frac{A_{t}}{M_{t}}\right|,
\end{gather*}
$$

where

$$
\begin{aligned}
A_{t} & =\beta E_{t}+(1-\beta) A_{t-1} \\
M_{t} & =\beta\left|E_{t}\right|+(1-\beta) M_{t-1} \\
E_{t} & =y_{t}-F_{t}
\end{aligned}
$$

A_{t} is a smoothed estimate of the forecast error and a weighted average of $A_{t-1} 348$ and the last forecast error, E_{t}.

One of the great forecasting models is the Hold (1957) model that allowed 350 AU15 forecasting of data with trends. Holt's linear exponential smoothing forecast is 351

$$
\begin{align*}
L_{t} & =\alpha y_{t}+(1-\alpha)\left(L_{t-1}+b_{t-1}\right) \\
b_{t} & =\beta\left(L_{t}-L_{t-1}\right)+(1-\beta) b_{t-1} \\
F_{t+m} & =L_{t}+b_{t} m \tag{1.35}
\end{align*}
$$

L_{t} is the level of the series at time t, and b_{t} is the estimate of the slope of the series 352 at time t. The Holt model forecast should be better forecasts than adaptive expo- 353 nential smoothing models, which lack trends. Makridakis et al. (1998) remind the 354 reader that the Holt model is often referred to as "double exponential smoothing." If 355 $\alpha=\beta$, then the Holt model is equal to Brown's double exponential smoothing 356 model.

The Hold (1957) and Winters (1960) seasonal model can be written as 358

$$
\begin{aligned}
& (\text { Level }) \quad L_{t}=\alpha \frac{y_{t}}{s_{t-s}}+(1-\alpha)\left(L_{t-1}+b_{t-1}\right) \\
& (\text { Trend }) \quad b_{t}+\beta\left(L_{t}-L_{t-1}\right)+(a-\beta) b_{t-1} \\
& (\text { Seasonal }) \quad s_{t}=\gamma \frac{y_{t}}{L_{t}}+(a-\gamma) s_{t-s} \\
& (\text { Forecast }) \quad F_{t+m}=\left(L_{t}+b_{t} m\right) S_{t-s+m} .
\end{aligned}
$$

Seasonality is the number of months or quarters, L_{t} is the level of the series, b_{t} is 359 the trend of the series, and s_{t} is the seasonal component.

References

Cragg, J.G. and B.G. Malkiel.1968. "The Consensus and Accuracy of Some Predictions of the 362 Growth of Corporate Earnings". Journal of Finance 23, 67-84.
Elton, E. J. and M.J. Gruber. 1972. "Earnings Estimates and the Accuracy of Expectational Data. 364 Management Science 18, B409-B424.
Elton, E. J., M.J. Gruber, and M. Gultekin. 1981. "Expectations and Share Prices." Management 366 Science 27, 975-987.

367
Granger, C.W.J. 1980. "Testing for Causality: A Personal Viewpoint." Journal of Economic 368 Dynamics and Control 2, 329-352.
Granger, C.W.J. 1980. Foreccasting in Business and Economics. New York: Academic Press. 370
Granger, C.W.J. and P. Newbold. 1977. Forecasting Economic Time Series. New York: Academic 371 Press.

405 Zarnowitz, V. and A. Ozyildirim. 2001. "On the Measurement of Business Cycles and Growth

407 Zarnowitz, V. 1992. Business Cycles: Theory, History, Indicators, and Forecasting. Chicago, University of Chicago Press.

Author Queries

Chapter No.: 1 192189_1_En

Query Refs.	Details Required	Author's response			
AU1	Makridakis et al. (2000) is cited in the text but its bibliographic informa- tion is missing. Kindly provide its bibliographic information. Other- wise, please delete it from the text.				
AU2	Please check whether the edit made to the sentence "First, in the mean error. .. is ok.				
AU3	Clements and Hendry (1998) is cited in the text but its bibliographic information is missing. Kindly pro- vide its bibliographic information. Otherwise, please delete it from the text.				
AU4	Theil (1961) is cited in the text but its bibliographic information is missing. Kindly provide its bibliographic in- formation. Otherwise, please delete it from the text.				
AU5	Elton et al. (2009) is cited in the text but its bibliographic information is missing. Kindly provide its biblio- graphic information. Otherwise, please delete it from the text.				
AU7	Granger and Newbold (1986) is cited in the text but its bibliographic information is missing. Kindly pro- vide its bibliographic information. Otherwise, please delete it from the text.				
Winters (1960) is cited in the text but its bibliographic information is miss- ing. Kindly provide its bibliographic information. Otherwise, please delete it from the text.					
Please revise the sentence "Second, it is essential the..." for clarity of thought.					
from the text.					
formation. Otherwise, please delete it			\quad	Holt (1957) is cited in the text but its bibliographic information is missing. Kindly provide its bibliographic in-	
:---	:---				

AU10	Makridakis and Hibon (1979) is cited in the text but its bibliographic information is missing. Kindly pro- vide its bibliographic information. Otherwise, please delete it from the text.	
AU11	Clemen and Winkler (1986) is cited in the text but its bibliographic information is missing. Kindly pro- vide its bibliographic information. Otherwise, please delete it from the text.	
AU12	Guerard and Stone (1992) is cited in the text but its bibliographic informa- tion is missing. Kindly provide its bibliographic information. Other- wise, please delete it from the text.	
AU13	Davis and Nelson (1937) is cited in the text but its bibliographic informa- tion is missing. Kindly provide its bibliographic information. Other- wise, please delete it from the text.	
AU14	Brown (1963) is cited in the text but its bibliographic information is miss- ing. Kindly provide its bibliographic information. Otherwise, please delete it from the text.	
AU16	Hold (1957) is cited in the text but its bibliographic information is missing. Kindly provide its bibliographic in- formation. Otherwise, please delete it from the text.	
Guerard and Stone (1992); Makrida- kis and Winkler (1983); Winkler and Makridakis (1983); Zarnowitz (2004); Zarnowitz (2001); Zarnowitz and Ozyildirim (2001); Zarnowitz (1992) have been provided in the reference list but citations in the text are missing. Please advise location of citations. Otherwise, delete it from the reference list.		

Chapter 2

A forecast is merely a prediction about the future values of data. However, most 3 extrapolative model forecasts assume that the past is a proxy for the future. That is, 4 the economic data for the 2012-2020 period will be driven by the same variables as 5 was the case for the 2000-2011 period, or the $2007-2011$ period. There are many 6 traditional models for forecasting: exponential smoothing, regression, time series, 7 and composite model forecasts, often involving expert forecasts. Regression analy- 8 sis is a statistical technique to analyze quantitative data to estimate model 9 parameters and make forecasts. We introduce the reader to regression analysis in 10 this chapter.

The horizontal line is called the X-axis and the vertical line the Y-axis. Regres- 12 sion analysis looks for a relationship between the X variable (sometimes called the 13 "independent" or "explanatory" variable) and the Y variable (the "dependent" 14 variable).

For example, X might be the aggregate level of personal disposable income in 16 the United States and Y would represent personal consumption expenditures in the 17 United States. By looking up these numbers for a number of years in the past, we 18 can plot points on the graph. More specifically, regression analysis seeks to find the 19 "line of best fit" through the points. Basically, the regression line is drawn to best 20 approximate the relationship between the two variables. Techniques for estimating 21
the regression line (i.e., its intercept on the Y-axis and its slope) are the subject of this chapter. Forecasts using the regression line assume that the relationship which existed in the past between the two variables will continue to exist in the future. There may be times when this assumption is inappropriate, such as the "Great Recession" of 2008 when the housing market bubble burst. The forecaster must be aware of this potential pitfall. Once the regression line has been estimated, the forecaster must provide an estimate of the future level of the independent variable. The reader clearly sees that the forecast of the independent variable is paramount to an accurate forecast of the dependent variable.

Regression analysis can be expanded to include more than one independent variable. Regressions involving more than one independent variable are referred to as multiple regression. For example, the forecaster might believe that the number of cars sold depends not only on personal disposable income but also on the level of interest rates. Historical data on these three variables must be obtained and a plane of best fit estimated. Given an estimate of the future level of personal disposable income and interest rates, one can make a forecast of car sales.

Regression capabilities are found in a wide variety of software packages and hence are available to anyone with a microcomputer. Microsoft Excel, a popular spreadsheet package, SAS, SCA, RATS, and EViews can do simple or multiple regressions. Many statistics packages can do not only regressions but also other quantitative techniques such as those discussed in Chap. 3 (Time Series Analysis and Forecasting). In simple regression analysis, one seeks to measure the statistical association between two variables, X and Y. Regression analysis is generally used to measure how changes in the independent variable, X, influence changes in the dependent variable, Y. Regression analysis shows a statistical association or correlation among variables, rather than a causal relationship among variables.

The case of simple, linear, least squares regression may be written in the form

$$
\begin{equation*}
Y=\alpha+\beta X+\varepsilon \tag{2.1}
\end{equation*}
$$

where Y, the dependent variable, is a linear function of X, the independent variable. The parameters α and β characterize the population regression line and ε is the randomly distributed error term. The regression estimates of α and β will be derived from the principle of least squares. In applying least squares, the sum of the squared regression errors will be minimized; our regression errors equal the actual dependent variable minus the estimated value from the regression line. If Y represents the actual value and Y the estimated value, their difference is the error term, e. Least squares regression minimized the sum of the squared error terms. The simple regression line will yield an estimated value of Y, \hat{Y}, by the use of the sample regression:

$$
\begin{equation*}
\hat{Y}=a+\beta X \tag{2.2}
\end{equation*}
$$

In the estimation (2.2), a is the least squares estimate of α and b is the estimate of β. Thus, a and b are the regression constants that must be estimated. The least
squares regression constants (or statistics) α and β are unbiased and efficient 61 (smallest variance) estimators of α and β. The error term, e_{i}, is the difference 62 between the actual and estimated dependent variable value for any given indepen- 63 dent variable values, X_{i}.

$$
\begin{equation*}
e_{i}=\hat{Y}_{i}-Y_{i} . \tag{2.3}
\end{equation*}
$$

The regression error term, e_{i}, is the least squares estimate of ε_{i}, the actual 65 error term. ${ }^{1}$

To minimize the error terms, the least squares technique minimizes the sum of 67 the squares error terms of the N observations,

$$
\begin{equation*}
\sum_{i=1}^{N} e_{i}^{2} \tag{2.4}
\end{equation*}
$$

The error terms from the N observations will be minimized. Thus, least squares 69 regression minimizes:

$$
\begin{equation*}
\sum_{i=1}^{N} e_{i}^{2}=\sum_{i=1}^{N}\left[Y_{i}-\hat{Y}_{i}\right]^{2}=\sum_{i=1}^{N}\left[Y_{i}-\left(\alpha+b X_{i}\right)\right]^{2} \tag{2.5}
\end{equation*}
$$

To assure that a minimum is reached, the partial derivatives of the squared error 71 terms function
will be taken with respect to a and b.

$$
\begin{aligned}
\frac{\partial \sum_{i=1}^{N} e_{i}^{2}}{\partial a} & =2 \sum_{i=1}^{N}\left(Y_{i}-a-b X_{i}\right)(-1) \\
& =-2\left(\sum_{i=1}^{N} Y_{i}-\sum_{i=1}^{N} a-b \sum_{i=1}^{N} X_{i}\right)
\end{aligned}
$$

[^0]\[

$$
\begin{aligned}
\frac{\partial \sum_{i=1}^{N} e_{i}^{2}}{\partial b} & =2 \sum_{i=1}^{N}\left(Y_{i}-a-b X_{i}\right)(-X i) \\
& =-2\left(\sum_{i=1}^{N} Y_{i} X_{i}-\sum_{i=1}^{N} X_{i}-b \sum_{i=1}^{N} X_{1}^{2}\right)
\end{aligned}
$$
\]

The partial derivatives will then be set equal to zero.

$$
\begin{align*}
& \frac{\partial \sum_{i=1}^{N} e_{i}^{2}}{\partial a}=-2\left(\sum_{i=1}^{N} Y_{i}-\sum_{i=1}^{N} a-b \sum_{i=1}^{N} X_{i}\right)=0 \tag{2.6}\\
& \frac{\partial \sum_{i=1}^{N} e_{i}^{2}}{\partial b}=-2\left(\sum_{i=1}^{N} Y X_{i}-\sum_{i=1}^{N} X_{l}-b \sum_{i=1}^{N} X_{1}^{2}\right)=0
\end{align*}
$$

Rewriting these equations, one obtains the normal equations:

$$
\begin{align*}
\sum_{i=1}^{N} Y_{i} & =\sum_{i=1}^{N} a+b \sum_{i=1}^{N} X_{i} \tag{2.7}\\
\sum_{i=1}^{N} Y_{i} X_{i} & =a \sum_{i=1}^{N} X_{i}+b \sum_{i=1}^{N} X_{1}^{2}
\end{align*}
$$

Solving the normal equations simultaneously for a and b yields the least squares regression estimates:

$$
\begin{align*}
& \hat{a}=\frac{\left(\sum_{i=1}^{N} X_{i}^{2}\right)\left(\sum_{i=1}^{N} Y_{i}\right)-\left(\sum_{i=1}^{N} X_{i} Y_{i}\right)}{N\left(\sum_{i=1}^{N} X_{i}^{2}\right)-\left(\sum_{i=1}^{N} X_{i}\right)^{2}} \tag{2.8}\\
& \hat{b}=\frac{\left(\sum_{i=1}^{N} X_{i} Y_{i}\right)-\left(\sum_{i=1}^{N} X_{i}\right)\left(\sum_{i=1}^{N} Y_{i}\right)}{N\left(\sum_{i=1}^{N} X_{i}^{2}\right)-\left(\sum_{i=1}^{N} X_{i}\right)^{2}}
\end{align*}
$$

An estimation of the regression line's coefficients and goodness of fit also can be found in terms of expressing the dependent and independent variables in terms of deviations from their means, their sample moments. The sample moments will be denoted by M.

$$
\begin{gathered}
M_{X X}=\sum_{i=1}^{N} x_{i}^{2}=\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2} \\
=N \sum_{i=1}^{N} X_{i}-\left(\sum_{i=1}^{N} X_{i}\right)^{2} \\
M_{X Y}=\sum_{i=1}^{N} x_{i} y_{i}=\sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right) \\
=N \sum_{i=1}^{N} X_{i} Y_{i}-\left(\sum_{i=1}^{N} X_{i}\right)\left(\sum_{i=1}^{N} Y_{i}\right) \\
M_{Y Y}= \\
\sum_{i=1}^{N} y_{i}^{2}=\sum_{i=1}^{N}(Y-\bar{Y})^{2} \\
=N\left(\sum_{i=1}^{N} Y_{i}^{2}\right)-\sum_{i=1}^{N}\left(Y_{i}\right)^{2} .
\end{gathered}
$$

The slope of the regression line, b, can be found by

$$
\begin{gather*}
b=\frac{M_{X Y}}{M_{X X}} \tag{2.9}\\
a=\frac{\sum_{i=1}^{N} Y_{i}}{N}-b \frac{\sum_{i=1}^{N} X_{i}}{N}=\bar{y}-b \bar{X} . \tag{2.10}
\end{gather*}
$$

The standard error of the regression line can be found in terms of the sample 83 moments.

$$
\begin{align*}
S_{e}^{2} & =\frac{M_{X X}\left(M_{Y Y}\right)-\left(M_{X Y}\right)^{2}}{N(N-2) M_{X X}} \tag{2.11}\\
S_{e} & =\sqrt{S_{e}^{2}} .
\end{align*}
$$

The major benefit in calculating the sample moments is that the correlation 85 coefficient, r, and the coefficient of determination, r^{2}, can easily be found.

$$
\begin{align*}
r & =\frac{M_{X Y}}{\left(M_{X X}\right)\left(M_{Y Y}\right)} \tag{2.12}\\
R^{2} & =(r)^{2} .
\end{align*}
$$

The coefficient of determination, R^{2}, is the percentage of the variance of the dependent variable explained by the independent variable. The coefficient of determination cannot exceed 1 nor be less than zero. In the case of $R^{2}=0$, the regression line's $Y=Y$ and no variation in the dependent variable are explained. If the dependent variable pattern continues as in the past, the model with time as the independent variable should be of good use in forecasting.

The firm can test whether the a and b coefficients are statistically different from zero, the generally accepted null hypothesis. A t-test is used to test the two null hypotheses:
$H_{0_{1}}: a=0$
$H_{\mathrm{A}_{1}}: a$ ne 0
$H_{0_{2}}: \beta=0$
$H_{\mathrm{A}_{2}}: \beta$ ne 0 ,
where ne denotes not equal.
The H_{0} represents the null hypothesis while H_{A} represents the alternative hypothesis. To reject the null hypothesis, the calculated t-value must exceed the critical t-value given in the t-tables in the appendix. The calculated t-values for a and b are found by

$$
\begin{align*}
t_{a} & =\frac{a-\alpha}{S_{e}} \sqrt{\frac{N\left(M_{X X}\right)}{M_{X X}+(N \bar{X})^{2}}} \tag{2.13}\\
t_{b} & =\frac{b-\beta}{S_{e}} \sqrt{\frac{\left(M_{X X}\right)}{N}}
\end{align*}
$$

The critical t-value, t_{c}, for the 0.05 level of significance with $N-2$ degrees of 106 freedom can be found in a t-table in any statistical econometric text. One has a

$$
\begin{array}{r}
a+t a /{ }_{2} S_{e}^{+} \sqrt{\frac{(N \bar{X})^{2}+M_{X X}}{N\left(M_{X X}\right)}} \tag{2.14}\\
b+t a /{ }_{2} S_{e} \sqrt{\frac{N}{M_{X X}}} .
\end{array}
$$

To test whether the model is a useful model, an F-test is performed where
$112 H_{0}=\alpha=\beta=0$
$113 H_{\mathrm{A}}=\alpha$ ne β ne 0

$$
\begin{equation*}
F=\frac{\sum_{i=1}^{N} Y^{2} \div 1-\beta^{2} \sum_{i=1}^{N} X_{i}^{2}}{\sum_{i=1}^{N} e^{2} \div N-2} \tag{2.15}
\end{equation*}
$$

As the calculated F-value exceeds the critical F-value with $(1, \mathrm{~N}-2)$ degrees of 114 freedom of 5.99 at the 0.05 level of significance, the null hypothesis must be 115 rejected. The 95% confidence level limit of prediction can be found in terms of 116 the dependent variable value:

$$
\begin{equation*}
\left(a+b X_{0}\right)+t a /{ }_{2} S_{e} \sqrt{\frac{N\left(X_{0}-\bar{X}\right)^{2}}{1+N+M_{X X}}} \tag{2.16}
\end{equation*}
$$

Examples of Financial Economic Data

The most important use of simple linear regression as developed in (2.9) and (2.10) 119 is the estimation of a security beta. A security beta is estimated by running a 120 regression of 60 months of security returns as a function of market returns. The 121 market returns are generally the Standard \& Poor's 500 (S\&P500) index or a 122 capitalization-weighted index, such as the value-weighted Index from the Center 123 for Research in Security Prices (CRSP) at the University of Chicago. The data for 124 beta estimations can be downloaded from the Wharton Research Data Services 125 (WRDS) database. The beta estimation for IBM from January 2005 to December 126 2009, using monthly S\&P 500 and the value-weighted CRSP Index, produces a beta 127 of approximately 0.80 . Thus, if the market is expected to increase 10% in the 128 coming year, then one would expect IBM to return about 8%. The beta estimation of 129 IBM as a function of the S\&P 500 Index using the SAS system is shown in 130 Table 2.1. The IBM beta is 0.80 . The t-statistic of the beta coefficient, the slope 131 of the regression line, is 5.56 , which is highly statistically significant. The critical 132 $5 \% t$-value is with 30 degrees of freedom 1.96, whereas the critical level of the t - 133 statistic at the 10% is 1.645 . The IBM beta is statistically different from zero. The 134 IBM beta is not statistically different from one; the normalized z-statistical is 135 significantly less than 1 . That is, $0.80-1.00$ divided by the regression coefficient 136 standard error of 0.144 produces a Z-statistic of -1.39 , which is less than the critical 137 level of -1.645 (at the 10% level) or -1.96 (at the 5% critical level). The IBM beta 138 is 0.78 (the corresponding t-statistic is 5.87) when calculated versus the value- 139 weighted CRSP Index. ${ }^{2}$

[^1]t1.1 Table 2.1 WRDS IBM Beta 1/2005-12/2009

t1.2	Dependent variable: ret					
t1.3	Number of observations read: 60					
t1.4	Number of observations used: 60					
t1.5	Analysis of variance					
t1.6	Source	DF	Sum of squares	Mean square	F-value	$\operatorname{Pr}>F$
t1.7	Model	1	0.08135	0.08135	30.60	<0.0001
t1.8	Error	58	0.15419	0.00266		
t1.9	Corrected total	59	0.23554			
t1.10	Root MSE	0.05156	R^{2}	0.3454		
t1.11	Dependent mean	0.00808	Adjusted R^{2}	0.3341		
t1.12	Coeff var	638.1298				
t1.13 Parameter estimates						
t1.14	Variable	DF	Parameter estimate	Standard error	t-Value	$\mathrm{Pr}>\|t\|$
t1.15	Intercept	1	0.00817	0.00666	1.23	0.2244
t1.16	Sprtrn	1	0.80063	0.14474	5.53	<0.0001

t2.1 Table 2.2 An Estimated Consumption Function, 1947-2011
t2.2 Dependent variable: RPCE
t2.3 Method: least squares
t2.4 Sample(adjusted): 1,259
t2.5 Included observations: 259 after adjusting endpoints
t2.7
t2.8
t2.9 R^{2}
t2.10 Adjusted R
t2.11 S
t2.12
t2.13
t2.14

Variable	Coefficient	Std. error	t-Statistic	Prob.
C	-120.0314	12.60258	-9.524349	0.0000
RPDI	0.933251	0.002290	407.5311	0.0000
R^{2}	0.998455	Mean dependent var	$4,319.917$	
Adjusted R^{2}	0.998449	S.D. dependent var	$2,588.624$	
S.E. of regression	101.9488	Akaike info criterion	12.09451	
Sum squared resid	$2,671,147$	Schwarz criterion	12.12198	
Log likelihood	$-1,564.239$	F-statistic	$166,081.6$	
Durbin-Watson stat	0.197459	Prob $(F$-statistic $)$	0.000000	

Let us examine another source of real-business economic and financial data. The St. Louis Federal Reserve Bank has an economic database, denoted FRED, containing some 41,000 economic series, available at no cost, via the Internet, at http://research.stlouisfed.org/fred2. Readers are well aware that consumption makes up the majority of real Gross Domestic Product, denoted GDP, the accepted measure of output in our economy. Consumption is the largest expenditure, relative to gross investment, government spending, and net exports in GDP data. If we download and graph real GDP and real consumption expenditures from FRED from 1947 to 2011, shown in Chart 2, one finds that real GDP and real consumption expenditures, in 2005 \$, have risen substantially in the postwar period. Moreover, there is a highly statistical significant relationship between real GDP and consumption if one estimates an ordinary least squares (OLS) line of the form of (2.8) with real GDP as the dependent variable and real consumption as the independent variable. The reader is referred to Table 2.2.

Table 2.3 An estimated consumption function, with lagged income
Dependent variable: RPCE
Method: least squares
Sample(adjusted): 2,259
Included observations: 258 after adjusting endpoints

Variable	Coefficient	Std. error	t-Statistic	Prob.	t 3.6
C	-118.5360	12.73995	-9.304274	0.0000	t 3.7
RPDI	0.724752	0.126290	5.738800	0.0000	t 3.8
LRPDI	0.209610	0.126816	1.652864	0.0996	t 3.9
R^{2}	0.998470	Mean dependent var	$4,332.278$	t 3.10	
Adjusted R^{2}	0.998458	S.D. dependent var	$2,585.986$	t 3.11	
S.E. of regression	101.5529	Akaike info criterion	12.09060	t 3.12	
Sum squared resid	$2,629,810$	Schwarz criterion	12.13191	t 3.13	
Log likelihood	$-1,556.687$	F-statistic	$83,196.72$	t 3.14	
Durbin-Watson stat	0.127677	Prob $(F$-statistic $)$	0.000000	t 3.15	

Source: US Department of Commerce, Bureau of Economic Analysis, Series GDPC1 and PCECC96, 1947-2011, seasonally-adjusted, Chained 2005 Dollars 156

The slope of consumption function is 0.93 , and is highly statistically significant. ${ }^{3} 157$ AU3
The introduction of current and lagged income variables in the consumption 158 function regression produces statistically significant coefficients on both current 159 and lagged income, although the lagged income variable is statistically significant 160 at the 10% level. The estimated regression line, shown in Table 2.3, is highly 1 statistically significant.

[^2]t4.1 Table 2.4 An estimated consumption function, with twice-lagged consumption

t4.2	Dependent variable: RPCE				
t4.3	Method: least squares				
t4.4	Included observations: 257 after adjusting endpoints				
t4.5	Variable	Coefficient	Std. error	t-Statistic	Prob.
4.6	C	-120.9900	12.92168	-9.363331	0.0000
t4.7	RPDI	0.736301	0.126477	5.821607	0.0000
$t 4.8$	LRPDI	0.229046	0.177743	1.288633	0.1987
4.9	L2RPDI	-0.030903	0.127930	-0.241557	0.8093
t4.10	R^{2}	0.998474	Mean depe	var	4,344.661
4.11	Adjusted R^{2}	0.998456	S.D. depen		2,583.356
$t 4.12$	S.E. of regression	101.5049	Akaike inf	erion	12.09353
4.13	Sum squared resid	2,606,723	Schwarz cr		12.14877
$t 4.14$	Log likelihood	-1,550.019	F-statistic		55,188.63
4.15	Durbin-Watson stat	0.130988	$\operatorname{Prob}(F$-sta		0.000000

Autocorrelation

An estimated regression equation is plagued by the first-order correlation of residuals. That is, the regression error terms are not white noise (random) as is assumed in the general linear model, but are serially correlated where

$$
\begin{equation*}
\varepsilon_{t}=\rho \varepsilon_{t=1}+U_{t}, \quad t=1,2, \ldots, N \tag{2.17}
\end{equation*}
$$

$173 \varepsilon_{t}=$ regression error term at time $t, \rho=$ first-order correlation coefficient, and $174 U_{t}=$ normally and independently distributed random variable

The serial correlation of error terms, known as autocorrelation, is a violation of a regression assumption and may be corrected by the application of the Cochrane-Orcutt (CORC) procedure. ${ }^{4}$ Autocorrelation produces unbiased, the expected value of parameter is the population parameter, but inefficient parameters. The variances of the parameters are biased (too low) among the set of linear unbiased estimators and the sample t - and F-statistics are too large. The CORC

[^3]procedure was developed to produce the best linear unbiased estimators (BLUE) 181 given the autocorrelation of regression residuals. The CORC procedure uses the 182 information implicit in the first-order correlative of residuals to produce unbiased 183 and efficient estimators:
\[

$$
\begin{aligned}
& Y_{t}=\alpha+\beta X_{t}+\varepsilon_{t} \\
& \hat{\rho}=\frac{\sum e_{t}, e_{t}-1}{\sum e_{t}^{2}-1}
\end{aligned}
$$
\]

The dependent and independent variables are transformed by the estimated rho, 185 $\hat{\rho}$, to obtain more efficient OLS estimates:

$$
\begin{equation*}
Y_{t}-\rho Y_{t-1}=\alpha(l-\rho)+\beta\left(X_{t}-\rho X_{t-1}\right)+u t \tag{2.19}
\end{equation*}
$$

The CORC procedure is an iterative procedure that can be repeated until the 187 coefficients converge. One immediately recognizes that as ρ approaches unity the 188 regression model approaches a first-difference model. 189

The Durbin-Watson, $D-W$, statistic was developed to test for the absence of 190 autocorrelation:
$\mathrm{H}_{0}: \rho=0$.
One generally tests for the presence of autocorrelation ($\rho=0$) using the 193 Durbin-Watson statistic:

$$
\begin{equation*}
D-W=d=\frac{\sum_{t=2}^{N}\left(e_{t}=e_{t-1}\right)^{2}}{\sum_{t=2}^{N} e_{t}^{2}} \tag{2.20}
\end{equation*}
$$

The es represent the OLS regression residuals and a two-tailed tail is employed 195 to examine the randomness of residuals. One rejects the null hypothesis of no 196 statistically significant autocorrelation if

$$
d<d_{\mathrm{L}} \text { or } d>4-d_{\mathrm{U}}
$$

where d_{L} is the "lower" Durbin-Watson level and d_{U} is the "upper" Durbin-Watson 198 level.

The upper and lower level Durbin-Watson statistic levels are given in Johnston 200 (1972). The Durbin-Watson statistic is used to test only for first-order correlation 201 among residuals.

$$
\begin{equation*}
D=2(1-\rho) \tag{2.21}
\end{equation*}
$$

If the first-order correlation of model residuals is zero, the Durbin-Watson 203 statistic is 2 . A very low value of the Durbin-Watson statistic, $d<d_{\mathrm{L}}$, indicates 204

Table 2.5 An estimated consumption function, 1947-2011
Dependent variable: D(RPCE)
Method: least squares
Included observations: 258 after adjusting endpoints

Variable	Coefficient	Std. error	t-Statistic	Prob.
C	22.50864	2.290291	9.827849	0.0000
D(RPDI)	0.280269	0.037064	7.561802	0.0000
R^{2}	0.182581	Mean dependent var	32.18062	
Adjusted R^{2}	0.179388	S.D. dependent var	33.68691	
S.E. of regression	30.51618	Akaike info criterion	9.682113	
Sum squared resid	$238,396.7$	Schwarz criterion	9.709655	
Log likelihood	$-1,246.993$	F-statistic	57.18084	
Durbin-Watson stat	1.544444	Prob $(F$-statistic)	0.000000	

positive autocorrelation between residuals and produces a regression model that is not statistically plagued by autocorrelation.

The inconclusive range for the estimated Durbin-Watson statistic is

$$
d_{\mathrm{L}}<d<d_{\mathrm{U}} \text { or } 4-d_{\mathrm{U}}<4-d_{\mathrm{U}} .
$$

One does not reject the null hypothesis of no autocorrelation of residuals if $d_{\mathrm{U}}<d<4-d_{\mathrm{U}}$.

One of the weaknesses of the Durbin-Watson test for serial correlation is that only first-order autocorrelation of residuals is examined; one should plot the correlation of residual with various time lags

$$
\operatorname{corr}\left(e_{t}, e_{t-k}\right)
$$

to identify higher-order correlations among residuals.
The reader may immediately remember that the regressions shown in Tables $2.1-2.3$ had very low Durbin-Watson statistics and were plagued by autocorrelation. We first-difference the consumption function variables and rerun the regressions, producing Tables $2.5-2.7$. The R^{2} values are lower, but the regressions are not plagued by autocorrelation. In financial economic modeling, one generally first-differences the data to achieve stationarity, or a series with a constant standard deviation.

The introduction of current and lagged income variables in the consumption function regression produces statistically significant coefficients on both current and lagged income, although the lagged income variable is statistically significant at the 10% level. The estimated regression line, shown in Table 2.6 , is highly statistically significant, and is not plagued by autocorrelation.

The introduction of current and lagged income variables in the consumption function regression produces statistically significant coefficients on both current and lagged income, statistically significant at the 1% level. The estimated regression line, shown in Table 2.5, is highly statistically significant, and is not plagued by autocorrelation.

Table 2.6 An estimated consumption function, with lagged income

Dependent variable: D(RPCE)					t6.2
Method: least squares					t6.3
Included observations: 257 after adjusting endpoints					t6.4
Variable	Coefficient	Std. error	t-Statistic	Prob.	t6.5
C	14.20155	2.399895	5.917570	0.0000	t6.6
D(RPDI)	0.273239	0.034027	8.030014	0.0000	t6.7
D(LRPDI)	0.245108	0.034108	7.186307	0.0000	t6.8
R^{2}	0.320314	Mean depe		32.23268	t6.9
Adjusted R^{2}	0.314962	S.D. depen		33.74224	t6.10
S.E. of regression	27.92744	Akaike inf		9.508701	t6.11
Sum squared resid	198,105.2	Schwarz c		9.550130	t6.12
Log likelihood	-1,218.868	F-statistic		59.85104	t6.13
Durbin-Watson stat	1.527716	$\operatorname{Prob}(F$-sta		0.000000	t6.14

Table 2.7 An estimated consumption function, with twice-lagged consumption

The introduction of current and once- and twice-lagged income variables in the 231 consumption function regression produces statistically significant coefficients on 232 both current and lagged income, although the twice-lagged income variable is 233 statistically significant at the 15% level. The estimated regression line, shown in 234 Table 2.7, is highly statistically significant, and is not plagued by autocorrelation. 235

Many economic time series variables increase as a function of time. In such 236 cases, a nonlinear least squares (NLLS) model may be appropriate; one seeks to 237 estimate an equation in which the dependent variable increases by a constant 238 growth rate rather than a constant amount. ${ }^{5}$ The nonlinear regression equation is 239 AU4

[^4]\[

$$
\begin{align*}
Y & =a b^{x} \\
\text { or } \log Y & =\log a+\log B X . \tag{2.22}
\end{align*}
$$
\]

240
241
The normal equations are derived from minimizing the sum of the squared error terms (as in OLS) and may be written as

$$
\begin{align*}
\sum(\log Y) & =N(\log a)+(\log b) \sum X \tag{2.23}\\
\sum(X \log Y) & =(\log a) \sum X+(\log b) \sum X^{2}
\end{align*}
$$

The solutions to the simplified NLLS estimation equation are

$$
\begin{align*}
\log a & =\frac{\sum(\log Y)}{N} \tag{2.24}\\
\log b & =\frac{\sum(X \log Y)}{\sum X^{2}} \tag{2.25}
\end{align*}
$$

244 It may well be that several economic variables influence the variable that one is 245 interested in forecasting. For example, the levels of the Gross National Product general form of the two-independent variable multiple regression is

$$
\begin{equation*}
Y_{t}=\beta_{1}+\beta_{2} X_{2 t}+\beta_{3} X_{3 t}+\varepsilon_{t}, \quad t=1, \ldots, N . \tag{2.26}
\end{equation*}
$$

In matrix notation multiple regression can be written:

$$
\begin{equation*}
Y=X \beta+\varepsilon . \tag{2.27}
\end{equation*}
$$

Multiple regression requires unbiasedness, the expected value of the error term 5

Multiple Regression

 (GNP), personal disposable income, or price indices can assert influences on the firm. Multiple regression is an extremely easy statistical tool for researchers and management to employ due to the great proliferation of computer software. Theis zero, and the X 's are fixed and independent of the error term. The error term is an identically and independently distributed normal variable. Least squares estimation of the coefficients yields

$$
\begin{array}{r}
\hat{\beta}=\left(\hat{\beta}_{1}, \hat{\beta}_{2}, \hat{\beta}_{3}\right) \\
Y=X \hat{\beta}+e \tag{2.28}
\end{array}
$$

Multiple regression, using the least squared principle, minimizes the sum of the 255 squared error terms:

$$
\begin{array}{r}
\sum_{i=1}^{N} e_{1}^{2}=e^{\prime} e \tag{2.29}\\
(Y-X \hat{\beta})^{\prime}(Y-X \hat{\beta})
\end{array}
$$

To minimize the sum of the squared error terms, one takes the partial derivative 257 of the squared errors with respect to $\hat{\beta}$ and the partial derivative set equal to zero. 258

$$
\begin{gather*}
\partial \frac{\left(e^{\prime} e\right)}{\partial \beta}=-2 X^{\prime} Y+2 X^{\prime} X \hat{\beta}=0 \tag{2.30}\\
\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y
\end{gather*}
$$

Alternatively, one could solve the normal equations for the two-variable to 259 determine the regression coefficients.

$$
\begin{align*}
\sum Y & =\beta_{1} N+\hat{\beta}_{2} \sum X_{2}+\hat{\beta}_{3} \sum X_{3} \\
\sum X_{2} Y & =\hat{\beta}_{1} \sum X_{2}+\hat{\beta}_{2} X_{2}^{2}+\hat{\beta}_{3} \sum X_{3}^{2} \tag{2.31}\\
\sum X_{3} Y & =\hat{\beta}_{1} \sum X_{3}+\hat{\beta}_{2} \sum X_{2} X_{3}+\hat{\beta}_{3} \sum X_{3}^{2}
\end{align*}
$$

When we solved the normal equation, (2.7), to find the a and b that minimized 261 the sum of our squared error terms in simple liner regression, and when we solved 262 the two-variable normal equation, equation (2.31), to find the multiple regression 263 estimated parameters, we made several assumptions. First, we assumed that the 264 error term is independently and identically distributed, i.e., a random variable with 265 an expected value, or mean of zero, and a finite, and constant, standard deviation. 266 The error term should not be a function of time, as we discussed with the 267 Durbin-Watson statistic, equation (2.21), nor should the error term be a function 268 of the size of the independent variable(s), a condition known as heteroscedasticity. 269 One may plot the residuals as a function of the independent variable(s) to be certain 270 that the residuals are independent of the independent variables. The error term 271 should be a normally distributed variable. That is, the error terms should have an 272 expected value of zero and 67.6% of the observed error terms should fall within the 273 mean value plus and minus one standard deviation of the error terms (the so-called 274 Bell Curve or normal distribution). Ninety-five percent of the observations should 275 fall within the plus or minus two standard deviation levels, the so-called $95 \% 276$ confidence interval. The presence of extreme, or influential, observations may 277 distort estimated regression lines and the corresponding estimated residuals. 278 Another problem in regression analysis is the assumed independence of the 279
independent variables in equation (2.31). Significant correlations may produce estimated regression coefficients that are "unstable" and have the "incorrect" signs, conditions that we will observe in later chapters. Let us spend some time discussing two problems discussed in this section, the problems of influential observations, commonly known as outliers, and the correlation among independent variables, known as multicollinearity.

There are several methods that one can use to identify influential observations or outliers. First, we can plot the residuals and 95% confidence intervals and examine how many observations have residuals falling outside these limits. One should expect no more than 5% of the observations to fall outside of these intervals. One may find that one or two observations may distort a regression estimate even if there are 100 observations in the database. The estimated residuals should be normally distributed, and the ratio of the residuals divided by their standard deviation, known as standardized residuals, should be a normal variable. We showed, in equation (2.31), that in multiple regression

$$
\hat{\beta}=\left(X^{\prime} X\right) X^{\prime} Y
$$

The residuals of the multiple regression line are given by

$$
e=Y^{\prime}-\hat{\beta} X
$$

The standardized residual concept can be modified such that the reader can calculate a variation on that term to identify influential observations. If we delete observation i in a regression, we can measure the change in estimated regression coefficients and residuals. Belsley et al. (1980) showed that the estimated regression coefficients change by an amount, DFBETA, where

$$
\begin{equation*}
\mathrm{DFBETA}_{i}=\frac{\left(X^{\prime} X\right)^{-1} X^{\prime} e_{i}}{1-h_{i}} \tag{2.32}
\end{equation*}
$$

301
302
where $h_{i}=X_{i}\left(X^{\prime} X\right)^{-1} X_{i}^{\prime}$.
The h_{i} or "hat" term is calculated by deleting observation i. The corresponding residual is known as the studentized residual, sr, and defined as

$$
\begin{equation*}
\mathrm{sr}_{i}=\frac{e_{i}}{\hat{\sigma} \sqrt{1-h_{i}}} \tag{2.33}
\end{equation*}
$$

where $\hat{\sigma}$ is the estimated standard deviation of the residuals. A studentized residual that exceeds 2.0 indicates a potential influential observation (Belsley et al. 1980). Another distance measure has been suggested by Cook (1977), which modifies the measure, CookD. As the researcher or modeler deletes observations, one needs to
compare the original matrix of the estimated residual's variance matrix. The 309 COVRATIO calculation performs this calculation, where

$$
\begin{equation*}
\text { COVRATIO }=\frac{1}{\left[\frac{n-p-1}{n-p}+\frac{e_{i}^{*}}{(n-p)}\right]^{p}\left(1-h_{i}\right)} \tag{2.34}
\end{equation*}
$$

where $n=$ number of observations, $p=$ number of independent variables, and 311 $e_{i}^{*}=$ deleted observations.

If the absolute value of the deleted observation >2, then the COVRATIO 313 calculation approaches

$$
\begin{equation*}
1-\frac{3 p}{n} \tag{2.35}
\end{equation*}
$$

A calculated COVRATIO that is larger than $3 p / n$ indicates an influential obser- 315 vation. The DFBETA, studentized residual, CookD, and COVRATIO calculations 316 may be performed within SAS. The identification of influential data is an important 317 component of regression analysis. One may create variables for use in multiple 318 regression that make use of the influential data, or outliers, to which they are 319 commonly referred.

The modeler can identify outliers, or influential data, and rerun the OLS 321 regressions on the re-weighted data, a process referred to as robust (ROB) regres- 322 sion. In OLS all data is equally weighted. The weights are 1.0. In ROB regression 323 one weights the data universally with its OLS residual; i.e., the larger the residual, 324 the smaller the weight of the observation in the ROB regression. In ROB regression, 325 several weights may be used. We will see the Huber (1973) and Beaton-Tukey 326 (1974) weighting schemes in our analysis. In the Huber robust regression proce- 327 dure, one uses the following calculation to weigh the data:

$$
\begin{equation*}
w_{i}=\left(1-\left(\frac{\left|e_{i}\right|}{\sigma_{i}}\right)^{2}\right)^{2} \tag{2.36}
\end{equation*}
$$

where $e_{i}=$ residual $i, \sigma_{i}=$ standard deviation of residual, and $w_{i}=$ weight of 329 observation i.

The intuition is that the larger the estimated residual, the smaller the weight. 331 A second robust re-weighting scheme is calculated from the Beaton-Tukey 332 biweight criteria where

$$
\begin{array}{r}
w_{i}=\left(1-\left(\frac{\frac{\left|e_{i}\right|}{\sigma_{e}}}{4.685}\right)^{2}\right)^{2}, \quad \text { if } \frac{\left|e_{i}\right|}{\sigma_{e}}>4.685 \tag{2.37}\\
1, \quad \text { if } \frac{\left|e_{i}\right|}{\sigma_{e}}<4.685
\end{array}
$$

A second major problem is one of multicollinearity, the condition of correlations among the independent variables. If the independent variables are perfectly correlated in multiple regression, then the ($X^{\prime} X$) matrix of (2.31) cannot be inverted and the multiple regression coefficients have multiple solutions. In reality, highly correlated independent variables can produce unstable regression coefficients due to an unstable $\left(X^{\prime} X\right)^{-1}$ matrix. Belsley et al. advocate the calculation of a condition number, which is the ratio of the largest latent root of the correlation matrix relative to the smallest latent root of the correlation matrix. A condition number exceeding 30.0 indicates severe multicollinearity.

The latent roots of the correlation matrix of independent variables can be used to estimate regression parameters in the presence of multicollinearity. The latent roots, $l_{1}, l_{2}, \ldots, l_{p}$ and the latent vectors $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{p}$ of the P independent variables can describe the inverse of the independent variable matrix of (2.29).

$$
\left(X^{\prime} X\right)^{-1}=\sum_{j=1}^{p} l_{j}^{-1} \gamma_{j} \gamma_{j}^{\prime}
$$

Multicollinearity is present when one observes one or more small latent vectors. If one eliminates latent vectors with small latent roots $(l<0.30)$ and latent vectors ($\gamma<0.10$), the "principal component" or latent root regression estimator may be written as

$$
\hat{\beta}_{\mathrm{LRR}}=\sum_{j=0}^{P} f_{j} \delta_{j}
$$

where $f_{j}=\frac{-\eta_{0} \lambda_{j}^{-1}}{\sum_{q} \gamma_{0}^{2} \lambda_{q}^{-1}}$,
where $n^{2}=\Sigma(y-\bar{y})^{2}$
and λ are the "nonzero" latent vectors. One eliminates the latent vectors with non-predictive multicollinearity. We use latent root regression on the BeatonTukey weighted data in Chap. 4.

The Conference Board Composite Index of Leading Economic Indicators and Real US GDP Growth: A Regression Example

The composite indexes of leading (leading economic indicators, LEI), coincident, and lagging indicators produced by The Conference Board are summary statistics for the US economy. Wesley Clair Mitchell of Columbia University constructed the indicators in 1913 to serve as a barometer of economic activity. The leading indicator series was developed to turn upward before aggregate economic activity increased, and decrease before aggregate economic activity diminished.

Historically, the cyclical turning points in the leading index have occurred before 364 those in aggregate economic activity, cyclical turning points in the coincident index 365 have occurred at about the same time as those in aggregate economic activity, and 366 cyclical turning points in the lagging index generally have occurred after those in 367 aggregate economic activity.

The Conference Board's components of the composite leading index for the 369 year 2002 reflects the work and variables shown in Zarnowitz (1992) list, which 370 continued work of the Mitchell (1913, 1927, 1951), Burns and Mitchell (1946), and 371 Moore (1961). The Conference Board index of leading indicators is composed of 372

1. Average weekly hours (mfg.) 373
2. Average weekly initial claims for unemployment insurance 374
3. Manufacturers' new orders for consumer goods and materials 375
4. Vendor performance 376
5. Manufacturers' new orders of nondefense capital goods 377
6. Building permits of new private housing units 378
7. Index of stock prices 379
8. Money supply

380
9. Interest rate spread 381
10. Index of consumer expectations 382

The Conference Board composite index of LEI is an equally weighted index in 383 which its components are standardized to produce constant variances. Details of the 384 LEI can be found on The Conference Board Web site, www.conference-board.org, 385 and the reader is referred to Zarnowitz (1992) for his seminal development of 386 underlying economic assumption and theory of the LEI and business cycles 387 AU9 (Table 2.8).

Let us illustrate a regression of real US GDP as a function of current and lagged 389 LEI. The regression coefficient on the LEI variable, 0.232 , in Table 2.9, is highly 390 statistically significant because the calculated t-value of 6.84 exceeds 1.96 , the $5 \% 391$ critical level. One can reject the null hypothesis of no association between the 392 growth rate of US GDP and the growth rate of the LEI. The reader notes, however, 393 that we estimated the regression line with current, or contemporaneous, values of 394 the LEI series.

395
The LEI series was developed to "forecast" future economic activity such that 396 current growth of the LEI series should be associated with future US GDP growth 397 rates. Alternatively, one can examine the regression association of the current 398 values of real US GDP growth and previous or lagged values, of the LEI series. 399 How many lags might be appropriate? Let us estimate regression lines using up to 400 four lags of the US LEI series. If one estimates multiple regression lines using the 401 EViews software, as shown in Table 2.10, the first lag of the LEI series is statisti- 402 cally significant, having an estimated t-value of 5.73 , and the second lag is also 403 statistically significant, having an estimated t-value of 4.48 . In the regression 404 analysis using three lags of the LEI series, the first and second lagged variables 405 are highly statistically significant, and the third lag is not statistically significant 406 because third LEI lag variable has an estimated t-value of only 0.12 . The critical 407
t8.1 Table 2.8 The conference board leading, coincident, and lagging indicator components

t8.2	Leading index		Standardization factor	
t8.3	1	BCI-01	Average weekly hours, manufacturing	0.1946
t8.4	2	BCI-05	Average weekly initial claims for unemployment insurance	0.0268
t8.5	3	BCI-06	Manufacturers' new orders, consumer goods and materials	0.0504
t8.6	4	BCI-32	Vendor performance, slower deliveries diffusion index	0.0296
t8.7	5	BCI-27	Manufacturers' new orders, nondefense capital goods	0.0139
t8.8	6	BCI-29	Building permits, new private housing units	0.0205
t8.9	7	BCI019	Stock prices, 500 common stocks	0.0309
t8.10	8	BCI-106	Money supply, M2	0.2775
t8.11	9	BCI-129	Interest rate spread, 10-year Treasury bonds less federal funds	0.3364
t8.12	10	BCI-83	Index of consumer expectations	0.0193
t8.13	Coincident index			
t8.14	1	BCI-41	Employees on nonagricultural payrolls	0.5186
t8.15	2	BCI-51	Personal income less transfer payments	0.2173
t8.16	3	BCI-47	Industrial production	0.1470
t8.17	4	BCI-57	Manufacturing and trade sales	0.1170
t8.18	Lagging index			
t8.19	1	BCI-91	Average duration of unemployment	0.0368
t8.20	2	BCI-77	Inventories-to-sales ratio, manufacturing and trade	0.1206
t8.21	3	BCI-62	Labor cost per unit of output, manufacturing	0.0693
t8.22	4	BCI-109	Average prime rate	0.2692
t8.23	5	BCI-101	Commercial and industrial loans	0.1204
t8.24	6	BCI-95	Consumer installment credit-to-personal income ratio	0.1951
t8.25	7	BCI-120	Consumer price index for services	0.1886

t9.1 Table 2.9 Real US GDP and the leading indicators: A contemporaneous examination
t9.2 Dependent variable: DLOG(RGDP)
t9.3 Sample(adjusted): 2,210
t9.4 Included observations: 209 after adjusting endpoints

t9.5	Variable	Coefficient	Std. error	t-Statistic
t9.6	C	0.006170	0.000593	10.40361
t9.7	DLOG(LEI)	0.232606	0.033974	6.846529
t9.8	R^{2}	0.184638	Mean dependent var	0.0000
t9.9	Adjusted R^{2}	0.180699	S.D. dependent var	0.0007605
t9.10	S.E. of regression	0.008020	Akaike info criterion	0.008860
t9.11	Sum squared resid	0.013314	Schwarz criterion	-6.804257
t9.12	Log likelihood	713.0449	F-statistic	-6.772273
t9.13	Durbin-Watson stat	1.594358	Prob $(F$-statistic)	46.874971
			0.000000	

$408 t$-level at the 10% level is 1.645 , for 30 observations, and statistical studies often use 409 the 10% level as a minimum acceptable critical level. The third lag is not statisti410 cally significant in the three quarter multiple regression analysis. In the four quarter 411 lags analysis of the LEI series, we report that the lag one variable has a t-statistic of

Table 2.10 Real GDP and the conference board leading economic indicators

Table 2.11 The REG procedure

Dependent variable: DLUSGDP					t11.2
Sample(adjusted): 6,210					t11.3
Included observations: 205 after adjusting endpoints					t11.4
Variable	Coefficient	Std. error	t-Statistic	Prob.	t11.5
C	0.004915	0.000555	8.849450	0.0000	t11.6
DLOG(LEI)	0.098557	0.036779	2.679711	0.0080	t11.7
DLOG(L1LEI)	0.139846	0.041538	3.366687	0.0009	t11.8
DLOG(L2LEI)	0.167168	0.041235	4.054052	0.0001	t11.9
DLOG(L3LEI)	-0.041170	0.041305	-0.996733	0.3201	t11.10
DLOG(L4LEI)	0.060672	0.036401	1.666786	0.0971	t11.11
R^{2}	0.384488	Mean depe		0.007512	t11.12
Adjusted R^{2}	0.369023	S.D. depen		0.008778	t11.13
S.E. of regression	0.006973	Akaike inf	rion	-7.064787	t11.14
Sum squared resid	0.009675	Schwarz cri		-6.967528	t11.15
Log likelihood	730.1406	F-statistic		24.86158	t11.16
Durbin-Watson stat	1.784540	$\operatorname{Prob}(F$-sta		0.000000	t11.17

3.36, highly significant; the second lag has a t-statistic of 4.05 , which is statistically 412 significant; the third LEI lag variable has a t-statistic of -0.99 , not statistically 413 significant at the 10% level; and the fourth LEI lag variable has an estimated 414 t-statistic of 1.67 , which is statistically significant at the 10% level. The estimation 415 of multiple regression lines would lead the reader to expect a one, two, and four 416 variable lag structure to illustrate the relationship between real US GDP growth and 417 The Conference Board LEI series. The next chapter develops the relationship using 418 time series and forecasting techniques. This chapter used regression analysis to 419 illustrate the association between real US GDP growth and the LEI series. 420

The reader is referred to Table 2.11 for EViews output for the multiple regres- 421 sion of the US real GDP and four quarterly lags in LEI.
t12.1 Table 2.12 The REG procedure model: MODEL1

t12.2 Dependent variable: dlRGDP						
t12.3 Number of observations read: 209						
t12.4 Number of observations used: 205						
t12.5 Number of observations with missing values: 4						
t12.6 Analysis of variance						
t12.7 Source	DF	Sum of squares	Mean square	F-value	$\operatorname{Pr}>F$	
t12.8 Model	5	0.00604	0.00121	24.85	<0.0001	
t12.9 Error	199	0.00968	0.00004864			
t12.10 Corrected total	204	0.01572				
t12.11	Root MSE	0.00697	R^{2}	0.3844		
t12.12	$\begin{aligned} & \text { Dependent } \\ & \text { mean } \end{aligned}$	0.00751	$\begin{gathered} \text { Adjusted } \\ R^{2} \end{gathered}$	0.3689		
t12.13	Coeff. var	92.82825				
t12.14 Parameter estimates						
Variable $\mathrm{t} 12.15$	DF	Parameter estimate	Standard error	t-Value	$\operatorname{Pr}>\|t\|$	Variance inflation
t12.16 Intercept	1	0.00492	0.00055545	8.85	<0.0001	0
t12.17 dlLEI	1	0.09871	0.03678	2.68	0.0079	1.52694
t12.18 dlLEI_1	1	0.13946	0.04155	3.36	0.0009	1.94696
t12.19 dlLEI_2	1	0.16756	0.04125	4.06	<0.0001	1.92945
t12.20 dlLEI_3	1	-0.04121	0.04132	-1.00	0.3198	1.93166
t12.21 dlLEI_4	1	0.06037	0.03641	1.66	0.0989	1.50421
t12.22 Collinearity diagnostics						
t12.23 Number	Eigenvalue	Condition index				
t12.24 1	3.08688	1.00000				
t12.25 2	1.09066	1.68235				
t12.26 3	0.74197	2.03970				
t12.27 4	0.44752	2.62635				
t12.28 5	0.37267	2.87805				
t12.29 6	0.26030	3.44367				
t12.30 Proportion of variation						
t12.31 Number	Intercept	dILEI	dlLEI_1	dlLEI_2	dlLEI_3	dlLEI_4
t12.32 1	0.02994	0.02527	0.02909	0.03220	0.02903	0.02481
t12.33 2	0.00016369	0.18258	0.05762	0.00000149	0.06282	0.19532
t12.34 3	0.83022	0.00047128	0.02564	0.06795	0.02642	0.00225
t12.35 4	0.12881	0.32579	0.00165	0.38460	0.00156	0.38094
t12.36 5	0.00005545	0.25381	0.41734	0.00321	0.44388	0.19691
t12.37 6	0.01081	0.21208	0.46866	0.51203	0.43629	0.19977

423 We run the real GDP regression with four lags of LEI data in SAS. We report the 424 SAS output in Table 2.12. The Belsley et al. (1980) condition index of 3.4 reveals 425 little evidence of multicollinearity and the collinearity diagnostics reveal no two 426 variables in a row exceeding 0.50 . Thus, SAS allows the researcher to specifically 427 address the issue of multicollinearity. We will return to this issue in Chap. 4.

Table 2.13 Modeling dIRGDP by OLS
t13.1

	Coefficient	Std. error	t-Value	t-Prob	Part. R^{2}	t13.2
Constant	0.00491456	0.0005554	8.85	0.0000	0.2824	t13.3
dlLEI	0.0985574	0.03678	2.68	0.0080	0.0348	t13.4
dlLEI_1	0.139846	0.04154	3.37	0.0009	0.0539	t13.5
dlLEI_2	0.167168	0.04123	4.05	0.0001	0.0763	t13.6
dlLEI_3	-0.0411702	0.04131	-0.997	0.3201	0.0050	t13.7
dlLEI_4	0.0606721	0.03640	1.67	0.0971	0.0138	t13.8
Sigma	0.00697274	RSS	0.00967519164			t13.9
R^{2}	$0.384488 ; F(5,199)=24$	6 [0.000]**				t13 A010
Adjusted R^{2}	0.369023	Log-likelihood	730.141			t13.11
No. of observations	205	No. of parameters	6			t13.12
Mean(dlRGDP)	0.00751206	S.E.(dIRGDP)	0.00877802			t13.13
AR 1-2 test:	$\begin{gathered} F(2,197)=3.6873 \\ {[0.0268]^{*}} \end{gathered}$					t13.14
ARCH 1-1 test:	$\begin{gathered} F(1,203)=1.6556 \\ {[0.1997]} \end{gathered}$					t13.15
Normality test:	$\begin{aligned} & \text { Chi-squared }(2)=17.824 \\ & \quad[0.0001]^{* *} \end{aligned}$					t13.16
Hetero test:	$\begin{aligned} & F(10,194)=0.86780 \\ & \quad[0.5644] \end{aligned}$					t13.17
Hetero-X test:	$\begin{aligned} & F(20,184)=0.84768 \\ & \quad[0.6531] \end{aligned}$					t13.18
RESET23 test:	$\begin{aligned} & F(2,197)=2.9659 \\ & {[0.0538]} \end{aligned}$					t13.19

The SAS estimates of the regression model reported in Table 2.12 would lead the 428 reader to believe that the change in real GDP is associated with current, lagged, and 429 twice-lagged LEI.

Alternatively, one could use Oxmetrics, an econometric suite of products for 431 data analysis and forecasting, to reproduce the regression analysis shown in 432 Table 2.13. ${ }^{6} 433$

An advantage to Oxmetrics is its Automatic Model selection procedure that 434 addresses the issue of outliers. One can use the Oxmetrics Automatic Model 435 selection procedure and find two statistically significant lags on LEI and three 436 outliers: the economically volatile periods of 1971, 1978, and (the great recession 437 of) 2008 (Table 2.14).

The reader clearly sees the advantage of the Oxmetrics Automatic Model 439 selection procedure.

440

[^5]t14.1 Table 2.14 Modeling dIRGDP by OLS

t14.2	Coefficient	Std. error	t-Value	t-Prob	$\begin{aligned} & \text { Part. } \\ & R^{2} \end{aligned}$
t14.3 Constant	0.00519258	0.0004846	10.7	0.0000	0.3659
t14.4 dlLEI_1	0.192161	0.03312	5.80	0.0000	0.1447
t14.5 dlLEI_2	0.164185	0.03281	5.00	0.0000	0.1118
t14.6 I:1971-01-01	0.0208987	0.006358	3.29	0.0012	0.0515
t14.7 I:1978-04-01	0.0331323	0.006352	5.22	0.0000	0.1203
t14.8 I:2008-10-01	-0.0243503	0.006391	-3.81	0.0002	0.0680
t14.9 Sigma	0.00633157	RSS	0.00797767502		
$\mathrm{t} 14.10 R^{2}$	0.49248	$\begin{gathered} F(5,199)=38.62 \\ {[0.000]^{* *}} \end{gathered}$			
t14.11 Adjusted R^{2}	0.479728	Log-likelihood	749.915		
t14.12 No. of observations	205	No. of parameters	6		
t14.13 Mean(dlRGDP)	0.00751206	se(dIRGDP)	0.00877802		
t14.14 AR 1-2 test:	$\begin{gathered} F(2,197)=3.2141 \\ {[0.0423]^{*}} \end{gathered}$				
t14.15 ARCH 1-1 test:	$\begin{aligned} & F(1,203)=2.3367 \\ & {[0.1279]} \end{aligned}$				
t14.16 Normality test:	Chi-squared $\begin{aligned} & (2)=0.053943 \\ & {[0.9734]} \end{aligned}$				
t14.17 Hetero test:	$\begin{gathered} F(4,197)=3.2294 \\ {[0.0136]^{*}} \end{gathered}$				
t14.18 Hetero-X test:	$\begin{gathered} F(5,196)=2.5732 \\ {[0.0279]^{*}} \end{gathered}$				
t14.19 RESET23 test:	$\begin{gathered} F(2,197)=1.2705 \\ {[0.2830]} \end{gathered}$				

441 Summary

442 In this chapter, we introduced the reader to regression analysis and various estima443 tion procedures. We have illustrated regression estimations by modeling consump444 tion functions and the relationship between real GDP and The Conference Board
445 LEI. We estimated regressions using EViews, SAS, and Oxmetrics. There are many
446 advantages with the various regression software with regard to ease of use, outlier
447 estimations, collinearity diagnostics, and automatic modeling procedures. We will
448 use the regression techniques in Chap. 4.

449 Appendix

450 Let us follow The Conference Board definitions of the US LEI series and its 451 components:

Leading Index Components

BCI-01 Average weekly hours, manufacturing. The average hours worked per week 453 by production workers in manufacturing industries tend to lead the business cycle 454 because employers usually adjust work hours before increasing or decreasing their 455 workforce. 456

BCI-05 Average weekly initial claims for unemployment insurance. The number of 457 new claims filed for unemployment insurance is typically more sensitive than either 458 total employment or unemployment to overall business conditions, and this series 459 tends to lead the business cycle. It is inverted when included in the leading index; 460 the signs of the month-to-month changes are reversed, because initial claims 461 increase when employment conditions worsen (i.e., layoffs rise and new hirings 462 fall).
BCI-06 Manufacturers' new orders, consumer goods and materials (in 1996 \$). 464 These goods are primarily used by consumers. The inflation-adjusted value of new 465 orders leads actual production because new orders directly affect the level of both 466 unfilled orders and inventories that firms monitor when making production 467 decisions. The Conference Board deflates the current dollar orders data using 468 price indexes constructed from various sources at the industry level and a chain- 469 weighted aggregate price index formula.

BCI-32 Vendor performance, slower deliveries diffusion index. This index 471 measures the relative speed at which industrial companies receive deliveries from 472 their suppliers. Slowdowns in deliveries increase this series and are most often 473 associated with increases in demand for manufacturing supplies (as opposed to a 474 negative shock to supplies) and, therefore, tend to lead the business cycle. Vendor 475 performance is based on a monthly survey conducted by the National Association 476 of Purchasing Management (NAPM) that asks purchasing managers whether their 477 suppliers' deliveries have been faster, slower, or the same as the previous month. 478 The slower-deliveries diffusion index counts the proportion of respondents 479 reporting slower deliveries, plus one-half of the proportion reporting no change in 480 delivery speed.

481
BCI-27 Manufacturers' new orders, nondefense capital goods (in 1996 \$). New 482 orders received by manufacturers in nondefense capital goods industries (in 483 inflation-adjusted dollars) are the producers' counterpart to BCI-06.

BCI-29 Building permits, new private housing units. The number of residential 485 building permits issued is an indicator of construction activity, which typically 486 leads most other types of economic production. 487

BCI-19 Stock prices, 500 common stocks. The Standard \& Poor's 500 stock index 488 reflects the price movements of a broad selection of common stocks traded on the 489 New York Stock Exchange. Increases (decreases) of the stock index can reflect both 490
the general sentiments of investors and the movements of interest rates, which is usually another good indicator for future economic activity.

BCI-106 Money supply (in 1996 \$). In inflation-adjusted dollars, this is the M2 version of the money supply. When the money supply does not keep pace with inflation, bank lending may fall in real terms, making it more difficult for the economy to expand. M2 includes currency, demand deposits, other checkable deposits, travelers checks, savings deposits, small denomination time deposits, and balances in money market mutual funds. The inflation adjustment is based on the implicit deflator for personal consumption expenditures.

BCI-129 Interest rate spread, 10-year Treasury bonds less federal funds. The spread or difference between long and short rates is often called the yield curve. This series is constructed using the 10-year Treasury bond rate and the federal funds rate, an overnight interbank borrowing rate. It is felt to be an indicator of the stance of monetary policy and general financial conditions because it rises (falls) when short rates are relatively low (high). When it becomes negative (i.e., short rates are higher than long rates and the yield curve inverts) its record as an indicator of recessions is particularly strong.

BCI-83 Index of consumer expectations. This index reflects changes in consumer attitudes concerning future economic conditions and, therefore, is the only indicator in the leading index that is completely expectations-based. Data are collected in a monthly survey conducted by the University of Michigan's Survey Research Center. Responses to the questions concerning various economic conditions are classified as positive, negative, or unchanged. The expectations series is derived from the responses to three questions relating to (1) economic prospects for the respondent's family over the next 12 months; (2) economic prospects for the Nation over the next 12 months; and (3) economic prospects for the Nation over the next 5 years.

References

Beaton, A.E. and J.W. Tukey, 1974. "The Fitting of Power Series, Meaning Polynomials, Illustrated on Bank-Spectroscopic Data," Technometrics 16, 147-185.
Belsley, D.A., E. Kuh, and R.E. Welsch, 1980. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. New York: John Wiley \& Sons, Chapter 2.
Burns, A. F. and W.C. Mitchell. 1946. Measuring Business Cycles. New York, NBER.
Clements, M. P. and D. F. Hendry. 1998. Forecasting Economic Time Series. Cambridge: Cambridge University Press.
Cochrane, D. and G.H. Orcutt. 1949. Application of Least Squares Regression to Relationships Containing Autocorrelated Error Terms. Journal of the American Statistical Association. 44:32-61.
Doornik, J. A. and D. F. Hendry. 2009a. Empirical Econometric Modelling. Timberlake Consultants, Ltd.

Doornik, J. A. and D. F. Hendry. 2009b. Modelling Dynamic Systems. Timberlake Consultants, 531 Ltd.

532
Fama, E.F. 1976. Foundations of Finance. New York: Basic Books, Inc., Chapter 3. 533
Gunst, R.F. and R.L. Mason, 1980. Regression Analysis and its Application, New York: Marcel 534 Dekker, Inc.

535
Huber, P.J., 1973. "Robust Regression: Asymptotics, Conjectures, and Monte Carlo," Annals of 536 Statistics 1, 799-82.

537
Johnston, J. 1972. Econometric Methods. 2nd ed. New York: McGraw-Hill. 538
Makridakis, S., S.C. Wheelwright, and R. J. Hyndman, 1998. Forecasting: Methods and 539 Applications. John Wiley \& Sons, $3^{\text {rd }}$ edition. Chapters 5, 6.

540
Mansfield, E. 1994. Statistics for Business and Economics. 5th ed. New York: W.W. Norton \&. 541 Company.

542
Miller, Irwin, and John E. Freund. 1965. Probability and Statistics for Engineers. Englewood 543 Cliffs, N.J.: Prentice-Hall.
Mitchell, W.C. 1913. Business Cycles, New York, Burt Franklin reprint. 545
Mitchell, W.C. 1951. What Happens During Business Cycles: A Progress Report, New York, 546 NBER. 547
Moore, G.H. 1961. Business Cycle Indicators, 2 volumes, Princeton, Princeton University Press. 548
Murphy, James L. 1973. Introductory Econometrics. Homewood, IL: Richard D. Irwin, Inc. 549
Nelson, C.R. and C.I. Plosser. 1982. "Trends and Random Walks in Macroeconomic Time Series," 550 Journal of Monetary Economics, vol. 10, pp. 139-162.
Stiglitz, Joseph. 1993. Economics. New York: W. W. Norton \& Company. 552
Sharpe, W. F. 2007. Investors and Markets. Princeton; Princeton University Press, Chapter 4. 553
Zarnowitz, V. 2004. "The Autonomy of Recent US Growth and Business Cycles". In P. Dua, Ed., 554 Business Cycles and Economic Growth: An Analysis Using Leading Indicators. New York: 555 Oxford University Press, 44-82.
Zarnowitz, V. 2001. "The Old and the New in the U.S. Economic Expansion." The Conference 557 Board. EPWP \#01-01.
Zarnowitz, V. 1992. Business Cycles: Theory, History, Indicators, and Forecasting. Chicago, 559 University of Chicago Press.

Author Queries

Chapter No.: 2 192189_1_En

Query Refs.	Details Required	Author's response		
AU1	Please note that equations have been renumbered for sequential ordering in the text. The cross references have been changed as well. Please check.			
AU2	Please check the thought content of the part "If Y represents the actual value and Y the estimated value" as "Y" is given twice in the assumption used..			
AU3	Please check whether the inserted year "1993" in footnote 3 is ok.			
AU4	Please note that "C.T. Clark and L.L. Schkade, Statistical Analysis for Administrative Decisions (Cincinna- ti: South-Western Publishing Com- pany, 1979" is cite in footnote 5 but not listed.			
AU5	"Cook (1977)" is cited in text but not given in the reference list. Please provide details in the list or delete the citation from the text.			
AU12	Please check the equation 2.29 cross referred here for appropriateness.			
AU6	Please check the usage "n""in this equation.			
AU8	Please provide the significance of introduced here. Please check if appropriate.			
"Mitchell (1927)" is cited in text but				
not given in the reference list. Please				
arovide details in the list or delete the				
citation from the text.			\quad	AU14.
:---				

Chapter 3
 An Introduction to Time Series Modeling and Forecasting

Abstract

An important aspect of financial decision making may depend on the forecasting 4

 effectiveness of the composite index of leading economic indicators, LEI. The 5 leading indicators can be used as an input to a transfer function model of real Gross 6 Domestic Product, GDP. The previous chapter employed four quarterly lags of the 7 LEI series to estimate regression models of association between current rates of 8 growth of real US GDP and the composite index of LEI. This chapter asks the 9 question as to whether changes in forecasted economic indexes help forecast 10 changes in real economic growth. The transfer function model forecasts are com- 11 pared to several naïve models in terms of testing which model produces the most 12 accurate forecast of real GDP. No-change (NoCH) forecasts of real GDP and 13 random walk with drift (RWD) models may be useful forecasting benchmarks 14 (Mincer and Zarnowitz 1969; Granger and Newbold 1977). Economists have 15 constructed LEI series to serve as a business barometer of the changing US 16 economy since the time of Mitchell (1913). The purpose of this study is to examine 17 the time series forecasts of composite economic indexes produced by The Confer- 18 ence Board (TCB), and test the hypothesis that the leading indicators are useful as 19 an input to a time series model to forecast real output in the United States. 20Economic indicators are descriptive and anticipatory time series data used to 21 analyze and forecast changing business conditions. Cyclical indicators are compre- 22 hensive series that are systemically related to the business cycle. Business cycles 23 are recurrent sequences of expansions and contractions in aggregate economic 24 activity. Coincident indicators have cyclical movements that approximately corre- 25 spond with the overall business cycle expansions and contractions. Leading 26 indicators reach their turning points before the corresponding business cycle 27 turns. The lagging indicators reach their turning points after the corresponding 28 turns in the business cycle.

An example of business cycles can be found in the analysis of Irving Fisher 30 (1911), who discussed how changes in the money supply lead to rising prices and an 31 initial fall in the rate of interest, and how this results in raising profits, creating 32 a boom. The interest rate later rises, reducing profits, and ending the boom. 33 A financial crisis ensues when businessmen, whose loan collateral is falling as 34
interest rates rise, run to cash and banks fail. The money supply is one series in TCB index of leading economic indexes, LEI.

Section "ARMA Model Identification in Practice" of this chapter presents an introduction to the models that are estimated and tested in the analysis of the forecasting effectiveness of the leading indicators. Section "Modeling Real GDP: An Example" presents the empirical evidence to support the time series models and reports how models adequately describe the data. Out-of-sample forecasting results are shown in Section "Leading Economic Indicators (LEI) and Real GDP Analysis: The Statistical Evidence, 1970-2002" for the United States and the G7 nations. ${ }^{1}$ We present additional evidence on out-of-sample forecasting for the Yen exchange, consumption-income relationship, and Real GDP and LEI transfer function modeling.

Basic Statistical Properties of Economic Series

This chapter develops and forecasts models of economic time series in which we initially use only the past history of the series. The chapter later explores explanatory variables in the forecast models. The time series modeling approach of Box and Jenkins involves the identification, estimation, and forecasting of stationary (or series transformed to stationarity) series through the analysis of the series autocorrelation and partial autocorrelation (PAC) functions. ${ }^{2}$ The autocorrelation function examines the correlations of the current value of the economic times series and its previous k-lags. That is, one can measure the correlation of a daily series, of shares, or other assets, by calculating

$$
\begin{equation*}
p_{j t}=a+b p_{j t-1} \tag{3.1}
\end{equation*}
$$

where $p_{j t}=$ today's price of stock $j ; p_{j t-1}=$ yesterday's price of stock j, and b is the correlation coefficient.

In a daily shares price series, b is quite large, often approaching a value of 1.00. As the number of lags or previous number of periods increases, the correlation tends to fall. The decrease is usually very gradual.

The PAC function examines the correlation between $p_{j t}$ and $p_{j t-2}$, holding constant the association between $p_{j t}$ and $p_{j t-1}$. If a series follows a random walk, the correlation between $p_{j t}$ and $p_{j t-1}$ is one, and the correlation between $p_{j t}$ and $p_{j t-2,}$ holding constant the correlation of $p_{j t}$ and $p_{j t-1}$, is zero. Random walk series are characterized with decaying autocorrelation functions and a PAC function with a "spike" at lag one, and zeros thereafter. Stationarity implies that the joint

[^6]probability $[p(Z)]$ distribution $P\left(Z_{t 1}, Z_{t 2}\right)$ is the same for all times t, t_{1}, and t_{2} where 68 the observations are separated by a constant time interval. The autocovariance of a 69 time series at some lag or interval, k, is defined to be the covariance between Z_{t} and 70 Z_{t+k} :
\[

$$
\begin{equation*}
\gamma_{k}=\operatorname{cov}\left[Z_{t}, Z_{t+k}\right]=E\left[\left(Z_{t}-\mu\right)\left(Z_{t+k}-\mu\right)\right] . \tag{3.2}
\end{equation*}
$$

\]

One must standardize the autocovariance, as one standardizes the covariance in 72 traditional regression analysis, before one can quantify the statistically significant 73 association between Z_{t} and Z_{t+k}. The autocorrelation of a time series is the 74 standardization of the autocovariance of a time series relative to the variance of 75 the time series, and the autocorrelation at lag k, ρ_{k}, is bounded between +1 and $-1: 76$

$$
\begin{align*}
\rho_{k} & =\frac{E\left[\left(Z_{t}-\mu\right)\left(Z_{t+k}-\mu\right)\right]}{\sqrt{E\left[\left(Z_{t}-\mu\right)^{2}\right] E\left[\left(Z_{t+k}-\mu\right)^{2}\right]}} \\
& =\frac{E\left[\left(Z_{t}-\mu\right)\left(Z_{t+k}-\mu\right)\right]}{\sigma_{Z}^{2}}=\frac{r_{k}}{r_{0}} . \tag{3.3}
\end{align*}
$$

The autocorrelation function of the process, $\left\{\rho_{k}\right\}$, represents the plotting of $r_{k} 77$ versus time, the lag of k. The autocorrelation function is symmetric about series and 78 thus $\rho_{k}=\rho_{-k}$; thus, time series analysis normally examines only the positive 79 segment of the autocorrelation function. One may also refer to the autocorrelation 80 function as the correlogram. The statistical estimates of the autocorrelation function 81 are calculated from a finite series of N observations, $Z_{1}, Z_{2}, Z_{3}, \ldots, Z_{n}$. The 82 statistical estimate of the autocorrelation function at lag k, r_{k}, is found by

$$
r_{k}=\frac{C_{k}}{C_{0}},
$$

where

$$
C_{k}=\frac{1}{N} \sum_{t=1}^{N-k}\left(Z_{t}-\bar{Z}\right)\left(Z_{t+k}-\bar{Z}\right), \quad k=0,1,2, \ldots, K .
$$

C_{k} is, of course, the statistical estimate of the autocovariance function at lag $k .85$ In identifying and estimating parameters in a time series model, one seeks to 86 identify orders (lags) of the time series that are statistically different from zero. 87 The implication of testing whether an autocorrelation estimate is statistically 88 different from zero leads one back to the t-tests used in regression analysis to 89 examine the statistically significant association between variables. One must 90 develop a standard error of the autocorrelation estimate such that a formal t-test 91 can be performed to measure the statistical significance of the autocorrelation 92 estimate. Such a standard error, S_{e}, estimate was found by Bartlett and, in large 93 samples, is approximated by

$$
\begin{equation*}
\operatorname{Var}\left[r_{k}\right] \cong \frac{1}{N} \quad \text { and } \quad S_{e}\left[r_{k}\right] \cong \frac{1}{\sqrt{N}} \tag{3.4}
\end{equation*}
$$

An autocorrelation estimate is considered statistically different from zero if it exceeds approximately twice its standard error.

A second statistical estimate useful in time series analysis is the PAC estimate of coefficient j at lag $k, \phi_{k j}$. The PAC are found in the following manner:

$$
\rho_{j}=\phi_{k l} p_{j-1}+\phi_{k 2} p_{j-2}+\ldots+\phi_{k(k-1)} p_{j k-1}+\phi_{k k} p_{j-k}, \quad j=1,2, \ldots, k
$$

99
or

$$
\left[\begin{array}{ccccc}
1 & \rho_{1} & \rho_{2} & \ldots & \rho_{k-1} \\
\rho_{1} & 1 & \rho_{1} & \ldots & \rho_{k-2} \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
\rho_{k-1} & \rho_{k-2} & \rho_{k-3} & \cdots & 1
\end{array}\right]\left[\begin{array}{c}
\phi_{k-1} \\
\phi_{k 2} \\
\vdots \\
\phi_{k k}
\end{array}\right]\left[\begin{array}{c}
\rho_{1} \\
\rho_{2} \\
\vdots \\
\rho_{k}
\end{array}\right]
$$

100 The PAC estimates may be found by solving the above equation systems for $101 k=1,2,3, \ldots, k$:

$$
\begin{gathered}
\phi_{11}=\rho_{1} \\
\phi_{22}=\frac{\rho_{2}-\rho_{1}^{2}}{1-\rho_{1}^{2}}=\frac{\left|\begin{array}{cc}
1 & \rho_{1} \\
\rho_{2} & \rho_{2}
\end{array}\right|}{\left|\begin{array}{cc}
1 & \rho_{1} \\
\rho_{1} & 1
\end{array}\right|}, \\
\phi_{33}=\frac{\left|\begin{array}{ccc}
1 & \rho_{1} & \rho_{1} \\
\rho_{1} & 1 & \rho_{2} \\
\rho_{2} & \rho_{1} & \rho_{3}
\end{array}\right|}{\left|\begin{array}{ccc}
1 & \rho_{1} & \rho_{2} \\
\rho_{1} & 1 & \rho_{1} \\
\rho_{2} & \rho_{1} & 1
\end{array}\right|} .
\end{gathered}
$$

102
The PAC function is estimated by expressing the current autocorrelation func103 tion estimates as a linear combination of previous orders of autocorrelation 104 estimates:

$$
\hat{r}_{1}=\hat{\phi}_{k 1^{r} j-1}+\hat{\phi}_{k 2^{2} j-2}+\ldots+\hat{\phi}_{k(k-1)^{r} j+k-1}+\hat{\phi}_{k k^{2} j-k}, \quad j=1,2, \ldots, k
$$

The standard error of the PAC function is approximately

$$
\operatorname{Var}\left[\hat{\phi}_{k k}\right] \cong \frac{1}{N} \quad \text { and } \quad S_{e}\left[\phi_{k k}\right] \cong \frac{1}{\sqrt{N}}
$$

A stochastic process, or time series, can be repeated as the output resulting from a 107 white noise input, $\alpha_{t} \cdot{ }^{3}$

$$
\begin{align*}
\tilde{Z}_{t} & =\alpha_{t}+\Psi_{1} \alpha_{t-1}+\Psi_{2} \alpha_{t-2}+\ldots \\
& =\alpha_{t}+\sum_{j=1}^{\infty} \Psi_{j} a_{t-j} \tag{3.5}
\end{align*}
$$

The filter weight, Ψ_{j}, transforms input into the output series. One normally 109 expresses the output, \tilde{Z}_{t}, as a deviation of the time series from its mean, μ, or origin 110

$$
\tilde{Z}_{t}=Z_{t}-\mu
$$

The general linear process leads one to represent the output of a time series, \tilde{Z}_{t}, as 111 a function of the current and previous value of the white noise process, α_{t}, which 112 may be represented as a series of shocks. The white noise process, α_{t}, is a series of 113 random variables characterized by

$$
\begin{aligned}
E\left[\alpha_{t}\right] & \cong 0 \\
\operatorname{Var}\left[\alpha_{t}\right] & =\sigma_{\alpha}^{2} \\
\gamma_{k}=E\left[\alpha_{t} \alpha_{t+k}\right] & =\sigma_{\alpha}^{2} \quad k \neq 0 \\
0 \quad k & =0
\end{aligned}
$$

The autocorrelation function of a linear process may be given by

$$
\gamma_{k}=\sigma_{\alpha}^{2} \sum_{j=0}^{\infty} \Psi_{j} \Psi_{j+k}
$$

The backward shift operator, B, is defined as $B Z_{t}=Z_{t-1}$ and $B^{j} Z_{t}=Z_{t-} j$. 116 The autocorrelation generating function may be written as

$$
\gamma(B)=\sum_{k=-\infty}^{\infty} \gamma_{k} B^{k}
$$

For stationarity, the ψ weights of a linear process must satisfy that $\psi(B) 118$ converges on or lies within the unit circle.

[^7]$$
\tilde{Z}_{t}=\phi_{1} \tilde{Z}_{t-1}+\phi_{2} \tilde{Z}_{t-2}+\ldots+\phi_{p} \tilde{Z}_{t-p}+\alpha_{t} .
$$

The autoregressive operator of order P is given by

$$
\phi(B)=1-\phi_{1} B^{1}-\phi_{2} B^{2}-\ldots-\phi_{p} B^{p}
$$

124 or

$$
\begin{equation*}
\phi(B) \tilde{Z}_{t}=\alpha_{t} . \tag{3.6}
\end{equation*}
$$

In an autoregressive model, the current value of the time series, \tilde{Z}_{t}, is a function of 126 previous values of the time series, $\tilde{Z}_{t-1}, \tilde{Z}_{t-2}, \ldots$, and is similar to a multiple 127 regression model. An autoregressive model of order p implies that only the first $128 p$ order weights are nonzero. In many economic time series, the relevant autogressive 129 order is one and the autoregressive process of order $p, \operatorname{AR}(p)$ is written as

$$
\tilde{Z}_{t}=\phi_{1} \tilde{Z}_{t-1}+\alpha_{t}
$$

130 or

$$
\begin{gathered}
\left(1-\phi_{1} B\right) \tilde{Z}_{t}=\alpha_{t} \text { implying } \\
\tilde{Z}_{t}=\phi^{-1}(B) \alpha_{t} .
\end{gathered}
$$

The relevant stationarity condition is $|B|<1$ implying that $\left|\phi_{1}\right|<1$. The autocorrelation function of a stationary autoregressive process

$$
\tilde{Z}_{t}=\phi_{1} \tilde{Z}_{t-1}+\phi_{2} \tilde{Z}_{t-2}+\ldots+\phi_{p} \tilde{Z}_{t-p}+\alpha_{t}
$$

may be expressed by the difference equation

$$
P_{k}=\phi_{1} \rho_{k-1}+\phi_{2} \rho_{k-2}+\ldots+\phi_{k} \rho_{k-p}, \quad k>0
$$

Or expressed in terms of the Yule-Walker equation as

$$
\begin{aligned}
& \rho_{1}=\phi_{1}+\phi_{2} \rho_{1}+\ldots+\phi_{p} \rho_{p-1}, \\
& \rho_{2}=\phi_{1} \rho_{1}+\phi_{2}+\ldots+\phi_{p} \rho_{p-2},
\end{aligned}
$$

$$
\overline{\bar{\rho}}_{p}=\phi_{1} \rho_{p-1}+\phi_{2} \rho_{p-2}+\ldots+\overline{\bar{\phi}}_{p}
$$

For the first-order AR process, $\mathrm{AR}(1)$

$$
\rho_{k}=\phi_{1} \rho_{k-1}=\overline{\bar{\phi}}_{p}
$$

The autocorrelation function decays exponentially to zero when ϕ_{1} is positive 136 and oscillates in sign and decays exponentially to zero when ϕ_{1} is negative:

$$
P_{1}=\phi_{1}
$$

and

$$
\sigma_{2}=\frac{\sigma_{\alpha}^{2}}{1-\phi_{1}^{2}}
$$

The PAC function cuts off after lag one in an AR(1) process. For a second-order 139 AR process, AR(2)

$$
\tilde{Z}_{t}=\phi_{1} \tilde{Z}_{t-1}+\phi_{2} \tilde{Z}_{t-k}+\alpha_{t}
$$

with roots

$$
\phi(B)=1-\phi_{1} B-\phi_{2} B^{2}=0
$$

and, for stationarity, roots lying outside the unit circle, ϕ_{1} and ϕ_{2}, must obey the 1 following conditions:

$$
\begin{gathered}
\phi_{2}+\phi_{1}<1 \\
\phi_{2}-\phi_{1}<1 \\
-1<\phi_{2}<1
\end{gathered}
$$

The autocorrelation function of an $\operatorname{AR}(2)$ model is

$$
\begin{equation*}
\rho_{k}=\phi_{1} \rho_{k-1}+\phi_{2} \rho_{k-2} \tag{3.7}
\end{equation*}
$$

The autocorrelation coefficients may be expressed in terms of the Yule-Walker 145 equations as

$$
\begin{aligned}
& \rho_{1}=\phi_{1}+\phi_{2} \rho_{2} \\
& \rho_{2}=\phi_{1} \rho_{1}+\phi_{2}
\end{aligned}
$$

147 which implies

$$
\begin{aligned}
& \phi_{1}=\frac{\rho_{1}\left(1-\rho_{2}\right)}{1-\rho_{1}^{2}}, \\
& \phi_{2}=\frac{\rho_{2}\left(1-\rho_{1}^{2}\right)}{1-\rho_{1}^{2}}
\end{aligned}
$$

148 and

$$
\rho_{1}=\frac{\phi_{1}}{1-\phi_{2}} \quad \text { and } \quad \rho_{2}=\phi_{2}+\frac{\phi_{1}^{2}}{1-\phi_{2}}
$$

For a stationary $\mathrm{AR}(2)$ process,

$$
\begin{gathered}
-1<\phi_{1}<1 \\
-1<\rho_{2}<1 \\
\rho_{1}^{2}<\frac{1}{2}\left(\rho_{2}+1\right)
\end{gathered}
$$

In an $\operatorname{AR}(2)$ process, the autocorrelation coefficients tail off after order two and the PAC function cuts off after the second order (lag). ${ }^{4}$

In a q-order moving average (MA) model, the current value of the series can be expressed as a linear combination of the current and previous shock variables:

$$
\begin{aligned}
\tilde{Z}_{t} & =\alpha_{1}-\theta_{1} \alpha_{t-1}-\ldots-\alpha_{q} \theta_{t-q} \\
& =\left(1-\theta_{1} B_{1}-\ldots-\theta_{q} B_{q}\right) \alpha_{t} . \\
& =\theta(B) \alpha_{t}
\end{aligned}
$$

The autocovariance function of a q -order moving average model is

$$
\gamma_{k}=E\left[\left(\alpha_{t}-\theta_{1} \alpha_{t-1}-\ldots-\theta_{q} \alpha_{t-q}\right)\left(\alpha_{t-k}-\theta_{1} \alpha_{t-k-1}-\ldots-\theta_{q} \alpha_{t-k-q}\right)\right]
$$

${ }^{4} \mathrm{~A}$ stationary $\operatorname{AR}(p)$ process can be expressed as an infinite weighted sum of the previous shock variables

$$
\tilde{Z}_{t}=\phi^{-1}(B) \alpha_{t} .
$$

In an invertible time series, the current shock variable may be expressed as an infinite weighted sum of the previous values of the series

$$
\theta^{-1}(B) \tilde{Z}_{t}=\alpha_{t} .
$$

The autocorrelation function, ρ_{k}, is

$$
\rho_{k}=\begin{array}{cl}
\frac{-\theta_{k}+\theta_{1} \theta_{k+1}+\ldots+\theta_{q-k} \theta_{q}}{1+\theta_{1}^{2}+\ldots+\theta_{q}^{2}} & k=1,2, \ldots, q \\
0 & k>q
\end{array} .
$$

The autocorrelation function of an MA (q) model cuts off, to zero, after lag q and 157 its PAC function tails off to zero after lag q. There are no restrictions on the moving 158 average model parameters for stationarity; however, moving average parameters 159 must be invertible. Invertibility implies that the π weights of the linear filter 160 transforming the input into the output series, the π weights lie outside the unit circle: 161

$$
\pi(B)=\Psi^{-1}(B)=\sum_{j=0}^{a} \phi^{j} B^{j} .
$$

In a first-order moving average model, $\mathrm{MA}(1)$

$$
\tilde{Z}_{t}=\left(1-\theta_{1} B\right) \alpha_{t}
$$

and the invertibility condition is $\left|\theta_{1}\right|<1$. The autocorrelation function of the MA 163 (1) model is

$$
\rho_{k}=\frac{-\theta_{1}}{1+\theta_{1}^{2}} \quad k=1, k>2 .
$$

The PAC function of an MA(1) process tails off after lag one and its autocorre- 165 lation function cuts off after lag one.

In a second-order moving average model, MA(2)

$$
\tilde{Z}_{t}=\alpha_{t}-\theta_{1} \alpha_{t-1}-\theta_{2} \alpha_{t-2}
$$

the invertibility conditions require

$$
\begin{gathered}
\theta_{2}<\theta_{1}<1 \\
\theta_{2}-\theta_{1}<1 \\
-1<\theta_{2}<1
\end{gathered}
$$

The autocorrelation function of the $\mathrm{MA}(2)$ is

$$
\rho_{1}=\frac{-\theta_{1}\left(1-\theta_{2}\right)}{1+\theta_{1}^{2}+\theta_{1}^{2}},
$$

$$
\rho_{2}=\frac{-\theta_{2}}{1+\theta_{1}^{2}+\theta_{1}^{2}}
$$

170 and

$$
\rho_{k}=\theta \quad \text { for } k>3
$$

17 The PAC function of an MA(2) tails off after lag two.
172 In many economic time series, it is necessary to employ a mixed autoregressive173 moving average (ARMA) model of the form

$$
\begin{equation*}
\tilde{Z}_{t}=\phi_{1} \tilde{Z}_{t-1}+\ldots+\phi_{p} \tilde{Z}_{t-p}+\alpha_{t}-\theta_{1} \alpha_{t-1}-\ldots-\theta_{q} \alpha_{t-q} \tag{3.8}
\end{equation*}
$$

174 or

$$
\left(1-\phi_{1} B-\phi_{2} B^{2}-\ldots-\theta_{p} B^{p}\right) \tilde{Z}_{t}=\left(1-\theta_{1} B-\theta_{2} B^{2}-\ldots-\theta_{q} B^{q}\right) \alpha_{t}
$$

175 that may be more simply expressed as

$$
\phi(B) \tilde{Z}_{t}=\theta(B) \alpha_{t} .
$$

176 The autocorrelation function of the ARMA model is

$$
\rho_{k}=\phi_{1} \rho_{k-1}+\phi_{2} \rho_{k-2}+\ldots+\phi_{p} \rho_{k-p}
$$

177 or

$$
\phi(B) \rho_{k}=0
$$

178 The first-order autoregressive-first-order moving average operator ARMA $(1,1)$
179 process is written as

$$
\tilde{Z}_{t}-\phi_{1} \tilde{Z}_{t-1}=\alpha_{t}-\theta_{1} \alpha_{t-1}
$$

180 or

$$
\left(1-\phi_{1}\right) \tilde{Z}_{t}=(1-\theta 1 B) \alpha_{t}
$$

181 The stationary condition is $-1<\phi_{1}<1$ and the invertibility condition is -1
$182<\phi_{1}<1$. The first two autocorrelations of the ARMA $(1,1)$ model are

$$
\rho_{1}=\frac{\left(1-\phi_{1} \theta_{1}\right)\left(\phi_{1}-\theta_{1}\right)}{1+\theta_{1}^{2}-2 \phi_{1} \theta_{1}}
$$

$$
\rho_{2}=\phi_{1} \rho_{1} .
$$

The PAC function consists only of $\phi_{11}=\rho_{1}$ and has a damped exponential. 184
An integrated stochastic progress generates a time series if the series is made 185 stationary by differencing (applying a time-invariant filter) the data. In an 186 integrated process, the general form of the time series model is

$$
\begin{equation*}
\phi(B)(1-B)^{d} X_{t}=\theta(B) \varepsilon_{t} \tag{3.9}
\end{equation*}
$$

where $\phi(B)$ and $\theta(B)$ are the autoregressive and moving average polynominals in 188 B of orders p and q, ε_{t} is a white noise error term, and d is an integer representing the 189 order of the data differencing. In economic time series, a first-difference of the data 190 is normally performed. ${ }^{5}$ The application of the differencing operator, d, produces a 191 stationary $\operatorname{ARMA}(p, q)$ process. The autoregressive integrated moving average, 192 ARIMA, model is characterized by orders p, d, and q [ARIMA $(p, d, q)]$. Many 193 economics series follow an RWD, and an ARMA (1,1) may be written as 194

$$
\bar{V}^{d} X_{t}=X_{t}-X_{t-1}=\varepsilon_{t}+b \varepsilon_{t-l} .
$$

An examination of the autocorrelation function estimates may lead one to 195 investigate using a first-difference model when the autocorrelation function 196 estimates decay slowly. In an integrated process, the $\operatorname{corr}\left(X_{t}, X_{t-\tau}\right)$ is approximately 197 unity for small values of time, τ.

ARMA Model Identification in Practice

Time series specialists use many statistical tools to identify models; however, the 200 sample autocorrelation and PAC function estimates are particularly useful in 201 modeling. Univariate time series modeling normally requires larger data sets than 202 regression and exponential smoothing models. It has been suggested that at least 203 $30-50$ observations be used to obtain reliable estimates. ${ }^{6}$ One normally calculates 204 the sample autocorrelation and PAC estimates for the raw time series and its first 205 (and possibly second) differences. The failure of the autocorrelation function 206 estimates of the raw data series to die out as large lags implies that a first difference 207 is necessary. The autocorrelation function estimates of a MA (q) process should cut 208

[^8]off after q. To test whether the autocorrelation estimates are statistically different from zero, one uses a t-test where the standard error of $v \tau$ is ${ }^{7}$
$$
n^{-1 / 2}\left[1+2\left(\rho_{1}^{2}+\rho_{2}^{2}+\ldots+\rho_{q}^{2}\right)\right]^{1 / 2} \quad \text { for } \quad \tau>q
$$

The PAC function estimates of an $\operatorname{AR}(p)$ process cut off after lag p. A t-test is used to statistically examine whether the PAC are statistically different from zero. The standard error of the PAC estimates is approximately

$$
\frac{1}{\sqrt{N}} \quad \text { for } \quad K>p
$$

One can use the normality assumption of large samples in the t-tests of the autocorrelation and PAC estimates. The identified parameters are generally considered statistically significant if the parameters exceed twice the standard errors.

The ARMA model parameters may be estimated using nonlinear least squares. Given the following ARMA framework generally pack-forecasts the initial parameter estimates and assumes that the shock terms are to be normally distributed:

$$
\alpha_{t}=\tilde{W}_{t}-\phi_{1} \tilde{W}_{t-1}-\phi_{2} \tilde{W}_{t-2}-\ldots-\phi_{p} \tilde{W}_{t-p}+\theta_{1} \alpha_{t-1}+\ldots+\theta_{q} \alpha_{t-q}
$$

where

$$
W_{t}=\bar{V}^{d} Z_{t} \quad \text { and } \quad \tilde{W}_{t}=W_{t}-\mu
$$

The minimization of the sum of squared errors with respect to the autoregressive and moving average parameter estimates produces starting values for the p order AR estimates and q order MA estimates:

$$
\left.\frac{\partial e_{t}}{-\partial \phi_{j}}\right|_{\beta_{0}}=\mu_{j, t} \text { and }\left.\frac{\partial e_{t}}{-\partial \theta_{i}}\right|_{\beta_{0}}=X_{j, t}
$$

It may be appropriate to transform a series of data such that the residuals of a fitted model have a constant variance, or are normally distributed. The log transformation is such a data transformation that is often used in modeling economic time series. Box and Cox (1964) put forth a series of power transformations useful in modeling time series. ${ }^{8}$ The data is transformed by choosing a value of λ that is

[^9]suggested by the relationship between the series amplitude (which may be 229 approximated by the range of subsets) and mean: ${ }^{9}$
\[

$$
\begin{equation*}
X_{t}^{\lambda}=\frac{X_{t}^{\lambda}-1}{\bar{X}^{\lambda-1}} \tag{3.10}
\end{equation*}
$$

\]

where X is the geometric mean of the series. One immediately recognizes that if 231 $\lambda=0$, the series is a logarithmic transformation. The log transformation is appro- 232 priate when there is a positive relationship between the amplitude and mean of the 233 series. A $\lambda=1$ implies that the raw data should be analyzed and there is no 234 relationship between the series range and mean subsets. One generally selects the 235 λ that minimizes the smallest residual sum of squares, although an unusual value of 236 λ may make the model difficult to interpret. Some authors may suggest that only 237 values of λ of $-0.5,0,0.5$, and 1.0 be considered to ease in the model building 238 process. ${ }^{10}$

Many time series, involving quarterly or monthly data, may be characterized by 240 rather large seasonal components. The ARIMA model may be supplemented with 241 seasonal autoregressive and moving average terms:

$$
\begin{align*}
& \left(1-\phi_{1} B-\phi_{2} B^{2}-\ldots-\phi_{p} B^{p}\right)\left(1-\phi_{1, s} B^{s}-\ldots-\phi_{p, s} B^{p} S^{s}\right)(1-B)^{d} \\
& \quad\left(1-B^{s}\right)^{d s} X_{t} \\
& =\left(1-\theta_{1} B-\ldots-\theta_{q} B^{q}\right)\left(1-\theta_{1, s} B^{s}-\ldots-\theta_{q, s} B^{q, s}\right) \alpha_{t} \text { or } \theta_{p}(B) \Phi_{p}\left(B^{s}\right) \tag{3.11}\\
& \bar{V}^{d} \bar{V}_{x}^{D} Z_{t} \\
& =\theta_{q}(B) \theta_{Q}\left(B^{s}\right) \alpha_{t} .
\end{align*}
$$

One recognizes seasonal components by an examination of the autocorrelation 243 and PAC function estimates. That is, the autocorrelation and PAC function 244 estimates should have significantly large values at lags 1 and 12 as well as smaller 245 (but statistically significant) values at lag 13 for monthly data. ${ }^{11}$ One seasonally 246 differences the data (a 12th-order seasonal difference for monthly data and 247 estimates the seasonal AR or MA parameters). An RWD model with a monthly 248 component may be written as

$$
\begin{equation*}
\bar{V} \bar{V}_{12} Z_{t}=(1-B)\left(1-\theta B^{12}\right) \alpha_{t} . \tag{3.12}
\end{equation*}
$$

The multiplicative form of the $(0,1,1) \times(0,1,1) 12$ model has a moving average 250 operator that may be written as

[^10]$$
(1-\theta B)\left(1-\theta B^{12}\right)=1-\theta B-\theta B^{12}+\theta B^{13}
$$
$$
\hat{v}_{k}=\frac{t=\sum_{k+1}^{n} \alpha_{t} \alpha_{t-k}}{\sum_{t=1}^{n} \alpha_{t}^{2}}, \quad k=1,2, \ldots
$$

The test statistic, Q, should be X^{2} distributed with $(m-p-q)$ degrees of freedom:

$$
Q=n \sum_{k=1}^{m} \hat{v}_{k}^{2}
$$

The Ljung-Box statistic is a variation on the Box-Pierce statistic and the Ljung-Box Q statistic tends to produce significance levels closer to the asymptotic levels than the Box-Pierce statistic for first-order moving average processes. The Ljung-Box statistic, the model adequacy check reported in the SAS system, can be written as

$$
\begin{equation*}
Q=n(n+2) \sum_{k=1}^{m}(n=k)^{-1} \hat{v}_{k}^{2} \tag{3.13}
\end{equation*}
$$

Residual plots are generally useful in examining model adequacy; such plots may identify outliers as we noted in the chapter. The normalized cumulative periodogram of residuals should be examined.

Granger and Newbold (1977) and McCracken (2002) use several criteria to evaluate the effectiveness of the forecasts with respect to the forecast errors. In this chapter, we use the root mean square error (RMSE) criteria. One seeks to minimize the square root of the sum of the absolute value of the forecast errors squared. That is, we calculate the absolute value of the forecast error, square the error, sum the squared errors, divided by the number of forecast periods, and take the square root of the resulting calculation. Intuitively, one seeks to minimize the forecast errors. The absolute value of the forecast errors is important because if

[^11]one calculated only a mean error, a 5% positive error could "cancel out" a $5 \% 276$ negative error. Thus, we minimize the out-of-sample forecast errors. We need a 277 benchmark for forecast error evaluation. An accepted benchmark (Mincer and 278 Zarnowitz 1969) for forecast evaluation is a NoCH. A forecasting model should 279 produce a lower RMSE than the NoCH model. If several models are tested, the 280 lowest RMSE model is preferred. 281

In the world of business and statistics, one often speaks of autoregressive, 282 moving average, and RWD models, or processes, as we have just introduced. 283

It is well known that the majority of economic series, including real Gross 284 National Product (GDP) in the United States, follow an RWD, and are represented 285 AU5 with ARIMA model with a first-order moving average operator applied to the first- 286 difference of the data. The data is differenced to produce stationary, where a 287 process has a (finite) mean and variance that do not change over time and the 288 covariance between data points of two series depends upon the distance between the 289 data points, not on the time itself. The RWD process, estimated with an ARIMA 290 $(0,1,1)$ model, is approximately equal to a first-order exponential smoothing model 291 (Cogger 1974). The RWD model has been supported by the work of Nelson and 292 Plosser (1982).

In a transfer function model, one models the dynamic relationship between the 294 deviations of input X and output Y. One is concerned with estimating the delay 295 between the input and output. The set of weights is often referred to as the impulse 296 response function: 297

$$
\begin{align*}
Y_{t} & =V_{0} \tilde{X}_{t}+V_{1} \tilde{X}_{t-1}+V_{2} \tilde{X}_{t-2} . \tag{3.14}\\
& =V(B) \tilde{X}_{t} . \tag{3.15}
\end{align*}
$$

Modeling Real GDP: An Example

GDP is the market value of all goods and services produced within a country in a 299 given period. The expenditure approach holds that GDP is the sum of personal 300 consumption, gross investment, government spending, and net exports (exports less 301 imports). Let us go to a source of real-business economic and financial data. The St. 302 Louis Federal Reserve Bank has an economic database, denoted FRED, containing 303 some 41,000 economic series, available at no cost, via the Internet, at http:// 304 research.stlouisfed.org/fred2. 305

If one downloaded and graphed quarterly real (in 2005 dollars) GDP data from 306 1947 to 2011Q1 (April 1, 2011), one sees in Chart 1 that the postwar period has 307 been one of great, fairly consistent growth.

Chart 1: Read GDP data, 1947-2010

The recession of 2007-2008 is pronounced and notable, the most obvious contraction of the postwar period.

Let us examine the autocorrelation (AC) and PAC functions of the quarterly data. The raw data AC and PAC function estimates, estimated in EViews, are shown in Table 3.1, and indicate the need to (first) difference the data. One can apply the Box-Jenkins time series methodology to the real GDP data and estimate several basic models. We can take the difference of the logarithm of the series to produce stationarity and estimate a first-order autoregressive parameter to approximate the data (Table 3.2).

We estimate an RWD model, an ARIMA $(0,1,1)$, in Table 3.3 for the US real GDP, 1947-2011Q1. The drift term, a first-order moving average term with a 0.289 coefficient, is statistically significant, having a t-statistic of 4.89. The overall F statistic of 31.12 indicates that the model is adequate fit. The RWD model is an adequate representation of the real GDP data generating process. One can, and should, fit other ARIMA models. ${ }^{13}$

The author fits an ARIMA $(1,1,0)$ model as an additional ARIMA benchmark at the suggestion of Professor Victor Zarnowitz. ${ }^{14}$ The ARIMA $(1,1,0)$ has a higher F-statistics than the ARIMA $(1,1,0)$ and a higher t-statistic on the first-order autoregressive parameter, 6.50 . The author used the ARIMA $(1,1,0)$ benchmark is

[^12]Table 3.1 Autocorrelation and partial autocorrelation function estimates of Real GDP, t1.1 1947-2011Q1

Autocorrelation	Partial correlation		AC	PAC	Q-Stat	Prob	t1.2
. ${ }^{* * * * * * * * ~}$. ${ }^{* * * * * * * * ~}$	1	0.990	0.990	256.60	0.000	t1.3
. ${ }^{* * * * * * * * * ~}$.\|.	2	0.979	-0.013	508.73	0.000	t1.4
. ${ }^{* * * * * * * * \mid}$.\|	3	0.968	-0.013	756.34	0.000	t1.5
. ${ }^{* * * * * * * * \mid}$.\|	4	0.958	-0.012	999.38	0.000	t1.6
. ${ }^{* * * * * * * * \mid}$.\|	5	0.947	-0.005	1237.9	0.000	t1.7
. ${ }^{* * * * * * * \mid}$.\|	6	0.936	-0.002	1471.9	0.000	t1.8
. ${ }^{* * * * * * * * \mid}$. 1.	7	0.925	-0.001	1701.6	0.000	t1.9
. ${ }^{* * * * * * * * \mid}$.\|	8	0.915	-0.001	1926.9	0.000	t1.10
. ${ }^{* * * * * * * * \mid}$.\|.	9	0.904	-0.003	2148.0	0.000	t1.11
. ${ }^{* * * * * * * * \mid}$. 1.	10	0.894	-0.010	2364.8	0.000	t1.12
. ${ }^{* * * * * * * * \mid}$. 1.	11	0.883	-0.015	2577.3	0.000	t1.13
. ${ }^{* * * * * * * * \mid}$.\|	12	0.871	-0.036	2785.1	0.000	t1.14
. ${ }^{* * * * * * * \mid}$. 1.	13	0.859	-0.037	2988.0	0.000	t1.15
. ${ }^{* * * * * * * \mid}$.\|.	14	0.847	-0.021	3186.0	0.000	t1.16
.\|******	. 1.	15	0.835	-0.004	3379.0	0.000	t1.17
.\|******	.\|	16	0.822	-0.017	3567.0	0.000	t1.18
. ${ }^{* * * * * * * \mid}$.\|	17	0.810	-0.008	3750.1	0.000	t1.19
.\|******	.\|.	18	0.797	-0.004	3928.2	0.000	t1.20
.\|******	.\|	19	0.785	-0.001	4101.6	0.000	t1.21
.\|******	.\|	20	0.772	-0.014	4270.2	0.000	t1.22
.\|******	.\|.	21	0.760	-0.006	4434.1	0.000	t1.23
.\|******	.\|	22	0.747	-0.014	4593.2	0.000	t1.24
.\|******	.\|.	23	0.734	-0.008	4747.6	0.000	t1.25
. ${ }^{* * * * * * * \mid}$.\|.	24	0.722	0.007	4897.5	0.000	t1.26

a study of the effectiveness of TCB LEI (Guerard 2001). Both ARIMA models are 328 AU7 adequately fit (Table 3.4). 329

If one chose not to difference the real GDP data and fit a first-order 330 autoregressive model, one finds an $\operatorname{AR}(1)$ parameter near 1, see Table 3.5. 331

The initial view of the adjusted R-square and F-statistic might lead the reader to 332 believe that the AR(1) model was almost "truth." One must model changes in 333 financial economic data. 334

Leading Economic Indicators and Real GDP Analysis: 335 The Statistical Evidence, 1970-2002

We introduce the time series modeling process in this study because we will use 337 TCB US composite LEI as an input to a transfer function model of US real GDP, 338 both series being first-differenced and log-transformed. The authors test the null 339 hypothesis that there is no statistical association between changes in the logged LEI 340

t2.2	Autocorrelation	Partial correlation	Lag	AC	PAC	Q-Stat	Prob		
t2.3	. ${ }^{* * * *}$.\|****		1	0.474	0.474	58.536	0.000	
t2.4	.\|***		.**	2	0.346	0.157	89.953	0.000	
t2.5	.\|*		*\|.		3	0.151	-0.082	95.941	0.000
t2.6	.\|*		.\|.		4	0.106	0.023	98.922	0.000
t2.7	.\|.		*. \|	5	-0.016	-0.089	98.987	0.000	
t2.8	.\|.		.\|.		6	0.022	0.056	99.111	0.000
t2.9	.\|.		.\|.		7	0.006	0.017	99.122	0.000
t2.10	.\|.		.\|.		8	-0.008	-0.039	99.141	0.000
t2.11	.\|*		. ${ }^{*}$ \|	9	0.126	0.192	103.44	0.000	
t2.12	.* \|	.\|.		10	0.104	-0.011	106.39	0.000	
t2.13	.\|.		*\|.		11	0.044	-0.09	106.92	0.000
t2.14	*\|.		*.\|	12	-0.059	-0.1	107.88	0.000	
t2.15	.\|.		.\|.		13	-0.005	0.062	107.88	0.000
t2.16	.\|.		. ${ }^{*}$ \|	14	-0.001	0.07	107.88	0.000	
t2.17	.\|.		.\|.		15	-0.005	-0.038	107.89	0.000
t2.18	.\|*		. ${ }^{*}$ \|	16	0.075	0.103	109.43	0.000	
t2.19	.\|.		.\|.	17	0.038	-0.033	109.82	0.000	
t2.20	.\|.		.\|.	18	0.058	0.001	110.76	0.000	
t2.21	.\|*		.\|*	19	0.096	0.071	113.34	0.000	
t2.22	.\|*			20	0.092	-0.013	115.73	0.000	
t2.23	.\|.		$\cdots \quad \mid$	21	0.024	0.005	115.89	0.000	
t2.24	.\|.	.\|.	22	0.053	0.051	116.7	0.000		
t2.25	.\|.	.\|.		23	0.06	0.013	117.74	0.000	
t2.26	.* \|	.\|*		24	0.126	0.12	122.29	0.000	

341 and changes in logged real GDP in the United States. A positive and statistically 342 significant coefficient indicates that the leading indicator composite series is 343 associated with rising real output, and leads to the rejection of the null hypothesis.
344 Zarnowitz (1992) examined the determinants of Real GDP, 1953-1982, using
345 VAR models. In this analysis, we test the statistical significance of TCB LEI by 346 adding the lags of the variable to an AR(1) model. Does the knowledge of the LEI

Table 3.3 An ARIMA RWD estimate of Real Gross Domestic Product, 1947-2011Q1
$\begin{array}{ll}\text { Dependent variable: DLOG(RGDP) } & \text { t3.2 }\end{array}$
Method: Least squares t3.3

Date: 02/12/12, Time: 07:34 t3.4
Sample(adjusted): 2259
t3.5
Included observations: 258 after adjusting endpoints t3.6
Convergence achieved after 12 iterations \quad t3.7
Backcast: $1 \quad$ t3.8

Variable	Coefficient	Std. error	t-Statistic	Prob.	t3.9
C	0.007817	0.000756	10.33377	0.0000	t 3.10
MA(1)	0.289085	0.059828	4.831927	0.0000	t 3.11
R-Squared	0.108390	Mean dependent var	0.007825	t 3.12	
Adjusted R-squared	0.104907	S.D. dependent var	0.009970	t 3.13	
S.E. of regression	0.009432	Akaike info criterion	-6.481599	t 3.14	
Sum squared resid	0.022777	Schwarz criterion	-6.454057	t 3.15	
Log likelihood	838.1263	F-Statistic	31.12102	t 3.16	
Durbin-Watson stat	1.866243	Prob $(F$-statistic $)$	0.000000	t 3.17	

Table 3.4 An ARIMA estimate of Real Gross Domestic Product, 1947-2011Q1
Dependent variable: DLOG(RGDP)
Method: Least squares \quad t4.3
Date: $01 / 23 / 12$, Time: $14: 52 \quad \mathrm{t} 4.4$
Sample(adjusted): 3259
t4.5
Included observations: 257 after adjusting endpoints \quad t4.6
Convergence achieved after 3 iterations \quad t4.7

Variable	Coefficient	Std. error	t-Statistic	Prob.	$t 4.8$
C	0.007875	0.000926	8.506078	0.0000	t 4.9
AR (1)	0.376487	0.057913	6.500889	0.0000	t 4.10
R-Squared	0.142170	Mean dependent var	0.007861	t 4.11	
Adjusted R-squared	0.138806	S.D. dependent var	0.009972	t 4.12	
S.E. of regression	0.009254	Akaike info criterion	-6.519720	t 4.13	
Sum squared resid	0.021838	Schwarz criterion	-6.492100	t 4.14	
Log likelihood	839.7840	F-statistic	42.26155	$\mathrm{t4.15}$	
Durbin-Watson stat	2.067711	Prob $(F$-statistic $)$	0.000000	t 4.16	

help forecast future changes in GDP, and can past values of the GDP data predict 347 the future growth of GDP? In a recent study of univariate and time series model 348 post-sample forecasting, Thomakos and Guerard (2001) compared RWD and 349 transfer-function models with NoCH forecasts using rolling one-period-ahead 350 post-sample periods. Guerard (2001) found that the AR(1) and RWD processes 351 are adequate representations of the time series process of real GDP, given the lags 352 of the autocorrelation and PAC functions. Guerard (2001) reported the estimated 353 cross-correlation functions between the G7 respective LEI and real GDP for the 354

Table 3.5 An AR(1) estimate of Real Gross Domestic Product, 1947-2011Q1
Dependent variable: RGDP
Method: Least squares
Date: 01/23/12, Time: 08:40
Sample(adjusted): 200259
Included observations: 60 after adjusting endpoints
Convergence achieved after 5 iterations

Variable	Coefficient	Std. error	t-Statistic	Prob.
C	$14,253.05$	885.7279	16.09191	0.0000
AR (1)	0.972952	0.009076	107.1982	0.0000
R-Squared	0.994978	Mean dependent var	$11,944.42$	
Adjusted R-squared	0.994892	S.D. dependent var	1137.426	
S.E. of regression	81.29588	Akaike info criterion	11.66683	
Sum squared resid	$383,323.1$	Schwarz criterion	11.73664	
Log likelihood	-348.0050	F-Statistic	$11,491.46$	
Durbin-Watson stat	1.033644	Prob $(F$-statistic)	0.000000	

1970-2000 period, and found that the resulting transfer function models were statistically significant in forecasting real GDP in the G7 nations.

In this chapter, the authors report the estimated autocorrelation and PAC functions of the US real GDP, 1963-March 2002, shown in Table 3.1. EViews is used in the analysis. Let us look at Table 3.6, the estimated autocorrelation PAC functions of real quarterly US GDP, March 1963-March 2002. The estimated autocorrelation function decays gradually, falling from 0.979 for a one period (quarter lag), 0.958 for a two quarter lag, to 0.584 for a 20 quarter lag, and 0.318 for a 36 quarter lag. The estimated PAC function is characterized by the "spike" at a one quarter lag. The first estimated partial autocorrelation is 0.979 , and the second partial autocorrelation is -0.005 . The US real GDP series can be estimated as an RWD series for the 1963-2002 period. The estimated functions substantiate the estimation of the first-order moving average operator of the first-differenced, logtransformed US real GDP series, denoted RWD, shown in Table 3.7. Guerard (2001) used an autoregressive variation of the RWD model as a forecasting benchmark. The residuals of the RWD model show few deviations from normality. The RWD is a statistically adequately fitted model. We estimate the crosscorrelation function of the LEI and real GDP for an initial 32 quarter estimation period, following Thomakos and Guerard (2004), and use the 1978-March 2002 period for initial US post-sample evaluation. Similar estimations are derived for real GDP series in France (FR), Germany (GY), and the UK (see Table 3.8). The LEI are statistically significantly associated with real GDP in the respective regressions in Table 3.8. The lag structures of the models were discussed in Guerard (2001), and we refer the reader to the initial modeling and forecasting analysis. The statistical significance of the transfer functions in Table 3.3 leads one to reject

Date: 05/09/03 Time: 14:28 Sample: 1158 Included observations: 157							
Autocorrelation	Partial Correlation			AC	PAC	Q-Stat	Prob
1			1	0.979	0.979	153.31	0.000
1	'	1	2	0.958	-0.005	301.09	0.000
1	1	1	3	0.937	-0.010	443.41	0.000
1		,	4	0.916	-0.024	580.18	0.000
		1	5	0.894	-0.024	711.33	0.000
1		1	6	0.871	-0.022	836.82	0.000
1	1	1	7	0.849	-0.015	956.70	0.000
1		'	8	0.826	-0.021	1071.0	0.000
	1	,	9	0.804	0.003	1179.9	0.000
	1	1	10	0.781	-0.011	1283.6	0.000
'	1	'	11	0.760	0.008	1382.4	0.000
1	1	,	12	0.739	0.004	1478.5	0.000
1	1	,	13	0.719	-0.005	1568.1	0.000
1	1	,	14	0.699	-0.011	1651.3	0.000
	'	'	15	0.678	0.002	1732.4	0.000
1	1	'	16	0.660	-0.004	1809.4	0.000
1	1	,	17	0.640	-0.012	1882.4	0.000
1	1	1	18	0.621	-0.003	1951.7	0.000
1	1	,	19	0.602	-0.011	2017.4	0.000
,	1	,	20	0.584	-0.006	2079.4	0.000
	'	'	21	0.566	0.004	2138.2	0.000
'	1	,	22	0.548	-0.001	2193.7	0.000
'	1	'	23	0.531	-0.004	2246.2	0.000
1	1	,	24	0.514	-0.013	2295.7	0.000
	1	,	25	0.487	0.005	2342.4	0.000
	1	'	28	0.480	-0.010	2388.4	0.000
1	1	,	27	0.464	-0.007	2427.7	0.000
1	1	,	28	0.448	-0.013	2466.5	0.000
,		,	29	0.431	-0.018	2502.7	0.000
	1	1	30	0.414	-0.016	2536.4	0.000
	1	,	31	0.397	-0.001	2567.7	0.000
	1	1	32	0.381	-0.020	2598.6	0.000
,	1	,	33	0.365	0.008	2623.3	0.000
,	1	'	34	0.349	-0.008	2648.0	0.000
,	1	1	35	0.333	0.001	2870.7	0.000
	1		36	0.318	-0.013	2691.5	0.000

t7.1 Table 3.7 Random walk with drift time series model of Real US GDP

t7.2	Dependent variable: DLUSGDP				
t7.3	Variable	Coefficient	Std. error	t-Statistic	Prob.
t7.4	C	0.008	0.0001	8.149	0.000
t7.5	MA(1)	0.218	0.087	2.507	0.013
t7.6	R-Squared	0.061			
t7.7	Adjusted R-squared	0.053			
t7.8	S.E. of regression	0.0086			
t7.9	Sum squared resid	0.0093	Schwarz criterion	-6.6575	
t7.10	Log likelihood	428.08	F-statistic	-6.6129	
t7.11	Durbin-Watson stat	1.92	Prob(F-statistic)	8.1570	
				0.0050	

t8.1 Table 3.8 Post-sample regression coefficients of the leading economic indicators, 1978-March 2002

t8.2	Country	Const.	$\begin{aligned} & \text { LEI } \\ & (-1) \end{aligned}$	$\begin{aligned} & \hline \text { LEI } \\ & (-2) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { LEI } \\ & (-3) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { LEI } \\ & (-4) \\ & \hline \end{aligned}$	AR(1)	Adjusted R-squared	F-Statistic
t8.3	USA (t)	0.005	0.337	0.060	0.141		0.053	0.283	10.400
t8.4		7.200	4.800	0.890	2.130		0.480		
t8.5	UK	0.005			0.214		-0.166	0.088	5.600
t8.6		7.500			2.610		-2.300		
t8.7	Germany	0.004	0.242		0.211		-0.250	0.102	4.610
t8.8		5.750	2.610		2.370		-2.300		
t8.9	France	0.004		0.140	0.133	-0.064	0.038	0.058	2.470
t8.10		7.960		1.930	1.870	-0.910	0.360		
t8.11	Japan	0.005	0.217				-0.437	0.174	11.030
t8.12		5.860	2.900				-4.660		
t8.13	Canada	0.008		0.306	0.036	-0.263	0.150	0.240	3.290
t8.14		4.880		2.340	0.270	-2.100	0.640		
t8.15	Italy	0.004		0.132	-0.089	-0.009	-0.050	0.059	1.460
t8.16		4.670		2.260	-1.480	-1.490	-0.240		

the null hypothesis of no statistical association changes in the LEI and changes in real GDP. The statistically significant lags in the cross-correlation functions show how past values of the LEI series are associated with the current values of the respective real GDP. That is, the LEI series lead their respective real GDP series and can be used as inputs to transfer function models of real GDP. The multiple regressions of the post-sample period are generally statistically significant at the 1% level, as shown by their respective F-statistics of the regressions. The exception to this result is the French real GDP estimate, see Table 3.8, that is significant at approximately the 5% level. Thus, the estimation of the transfer function is statistically significant relative to simply using an AR(1) time series model.

US and G7 Post-sample Real GDP Forecasting Analysis

In this section, the author estimates several time series models for the US leading 392 indicators and Real GDP, and corresponding models for the G7 nations. A simple 393 autoregressive variation on the random walk model, an ARIMA ($1,1,0$), is 394 estimated to serve as a naïve, forecasting model. The ARIMA model is referred 395 to as the RWD Model. The transfer function model uses the LEI series as the input 396 to the Real GDP (output) series. We will evaluate the forecasting performances of 397 the models with respect to their RMSE, defined as the square root of the sum of the 398 individual observation forecast errors squared. The most accurate forecast will have 399 the smallest forecast error squared and hence the smallest RMSE. The RMSE 400 criteria are proportional to the average squared error criteria used in Granger and 401 Newbold (1977). One can estimate models using 32 quarters of data and forecast 402 one-step-ahead. We compare the forecasting accuracy of four models of the US real 403 GDP. The models tested are (1) the transfer function model in which TCB compos- 404 ite index of ILEI is lagged three quarters, denoted TF; (2) a NoCH forecast; (3) the 405 simple RWD model; and (4) a simple transfer function model in which TCB 406 composite index of LEI is lagged one period, denoted TF1. One finds that the 407 three-quarter of lagged LEI transfer function is the most accurate out-of-sample 408 forecasting model for the US real GDP, although there is no statistically significant 409 differences in the rolling one-period-ahead root mean square forecasting errors of 410 the RWD, TF, and TF1 models. 411
The one-period-ahead quarterly RMSE for the 1978-March 2002 period of Real 412 $\begin{array}{ll}\text { GDP are shown in Table 3.9. } \\ \text { Thus, the US leading indicators lead Real GDP as one should expect, and the } & 413 \\ 414\end{array}$ ansfer function model produces lower forecast errors than the univariate model, 415 and a naive benchmark, the NoCH model. The reader notes that the transfer 416 function model uses a one-quarter lag that produces forecasts that are not statisti- 417 cally different from the three-quarter lags suggested from the estimated cross- 418 correlation function. 419

The model forecast errors are not statistically different (the t-value of the paired 420 differences of the univariate and TF models is 0.91). An analysis of the rolling one- 421 period-ahead RMSE produces somewhat different results for post-sample modeling 422 than the use of one long period of post-sample period. The multiple regression 423 models indicate statistical significance in the US composite index of LEI for the 424 1978-March 2002 period. One does not find that the transfer function model 425 forecast errors are (statistically) significantly lower than univariate ARIMA 426 model (RWD) errors in a rolling one-period-ahead analysis. The authors prefer to 427 measure forecasting performance in the rolling period manner (as we often live in a 428 one-period-ahead forecasting regime). 429

The RMSE of the G7 nations cast doubt as to the effectiveness of the LEI as a 430 statistically significant input in transfer function models forecasting real GDP. 431 Transfer function model forecasts of real GDP, using TCB do not significantly 432

Table 3.9 Post-sample accuracy of the US Real GDP models using The Conference Board LEI in the transfer function model

Model	RMSE
No-change	0.0117
RWD	0.0086
TF1	0.0080
TF	0.0079

Table 3.10 Post-sample accuracy of Real GDP models using TCB LEIs in the transfer function model

Nation	Model	Input source	RMSE
GR	NoCH		0.0114
	RWD		0.0109
	TF	TCB	0.0106
FR	NoCH		0.0081
	RWD		0.0065
	TF	TCB	0.0070
JP	NoCH		0.0177
	RWD		0.0152
	TF	TCB	0.0163
UK	NoCH		0.0106
	RWD		0.0090
	TF	TCB	0.0089

Table 3.11 Post-sample root mean square errors of real US GDP, 1982-2002

Estimation modeling periods	RMSE
32	5.31
36	5.18
40	5.19
44	4.99
48	4.99
52	5.03
56	5.05
60	5.08
NoCh	8.09

reduce RMSE relative to the RWD model forecasts during the 1978-March 2002 period. Please see Table 3.10.

One may ask why 32 observations were used. Why not use 60 observations of past real GDP to estimate the models? If one sought to minimize the forecasting error from 1982 to June 2002, and one varied the estimation modeling periods, one finds that the 32 -quarter estimation is quite reasonable, see Table 3.11. The 40- and 44-quarter estimation periods produce the lowest real RMSE, although the differences are not statistically significant.

This chapter examined the predictive information in TCB LEI for the United States, 442 the UK, Japan, and France. We find that TCB LEI and FIBER short-term LEI are 443 statistically significant in modeling the respective real GDP changes during the 444 1970-2000 period. One rejects the null hypothesis of no association between 445 changes in LEI and changes in real GDP in the United States, and the G7 nations. 446 If one uses a rolling 32-quarter estimation period and a one-period-ahead 447 forecasting RMSE calculation, the LEI forecasting errors are not significantly 448 lower than the univariate ARIMA model forecasts. In Chap. 6, we estimate addi- 449 tional time series models and introduce the reader to causality testing.

References

Arnott, R.1985. "The Use and Misuse of Consensus Earnings." Journal of Portfolio Management 452 18-27.

453
Ashley, R.A. 2003. "Statistically Significant Forecasting Improvements: How Much Out-of- 454 sample Data is Likely Necessary?" International Journal of Forecasting 19, 229-240. 455
Ashley, R. 1998. "A New Technique for Postsample Model Selection and Validation." Journal of 456 Economic Dynamics and Control 22, 647-665.

457
Ashley, R.A., C.W.J., Granger, and R.L. Schmalensee. 1980. "Advertising and Aggregate Con- 458 sumption: An Analysis of Causality." Econometrica 48, 1149-1168. 459
Basu, S. 1977. "Investment Performance of Common Stocks in Relations to their Price Earnings 460 Ratios: A Test of Market Efficiency." Journal of Finance 32, 663-682.

461
Bloch, M., J.B. Guerard, Jr, H.M. Markowitz, P. Todd, and G-L. Xu. 1993. "A Comparison of 462 Some Aspects of the U.S. and Japanese Equity Markets." Japan \& the World Economy 5, 3-26. 463
Box, G.E.P. and G.M. Jenkins. 1970. Time Series Analysis: Forecasting and Control. San 464 Francisco: Holden-Day.
Brown, L.D. 1999. Annotated I/B/E/S Bibliography. 466
Burns, A. F. and W.C. Mitchell. 1946. Measuring Business Cycles. New York, NBER. 467
Chan, L.K.C., N. Jegadeesh and J. Lakonishok. 1996. "Momentum Strategies." Journal of Finance 468 51, 1681-1713. 469
Clements, M.P. and D.F. Hendry. 1998. Forecasting Economic Time Series. Cambridge: 470 Cambridge University Press. 471
Clemen, R.T. and J.B. Guerard. 1989. "Econometric GNP Forecasts: Incremental Information 472 Relative to Naive Extrapolation." International Journal of Forecasting 5, 417-426. 473
Diebold, F.X. and G.D. Rudebusch. 1999. Business Cycles: Durations, Dynamics and 474 Forecasting. Princeton: Princeton University Press. 475
Diebold, F.X. and R.S. Mariano. 1995. "Comparing Predictive Accuracy." Journal of Business 476 and Economic Statistics 13, 253-263.
Dimson, E. 1988. Stock Market Anomalies. Cambridge: Cambridge University Press. 478
Elton, E.J., M.J. Gruber, S.J. Brown, and W.N. Goetzmann. 2007. Modern Portfolio Theory and 479 Investment Analysis, New York: Wiley, 7th Edition.

480
Elton, E.J., M.J. Gruber, and M. Gultekin. 1981. "Expectations and Share Prices." Management 481 Science 27, 975-987.

Fama, E.F. and K.R. French. 1995. "Size and the Book-to-Market Factors in Earnings and Returns." Journal of Finance 50, 131-155.
Farrell, J.L., Jr. 1997. Portfolio Management: Theory and Applications. New York McGraw-Hill/ Irwin.
Ferson, W.E. and C.R. Harvey. 1995. "Explaining the Predictability of Asset Returns,". In: Chen, A. (ed.) Research in Finance 11.

Friedman, M. and A. Schwartz. 1963. "Money and Business Cycles." Review of Economics and Statistics 45, pp. 32-64.
Givoly, D. and J. Lakonishok. 1979. "The Information Content of Financial Analysts' Forecasts of Earnings," Journal of Accounting and Economics 1, 165-185.
Gordon, R.J. 1986. The American Business Cycle. Chicago: University of Chicago Press.
Granger, C.W.J. 1980. "Testing for Causality: A Personal Viewpoint." Journal of Economic Dynamics and Control 2, 329-352.
Grinhold, R and R. Kahn. 1999. Active Portfolio Management New York: McGraw-Hill/ Irwin.
Graham, B, D. Dodd, and S. Cottle. 1934, 1962. Security Analysis: Principles and Technique. New York: McGraw-Hill Book Company. Editions one and four.
Granger, C.W.J. and P. Newbold. 1977. Forecasting Economic Time Series. New York Academic Press.
Guerard, J.B., Jr., Xu, G-L, and Gultekin, M. 2012. "Investing with Momentum: The Past, Present, and Future," Journal of Investing 21, 68-80.
Guerard, J.B., Jr., S.C. Chettiappan, and G-L, Xu. 2010. "Stock-Selection Modeling and Data Mining Corrections: Long-Only versus 130/30 Models". In: J.B. Guerard, (ed.) The Handbook of Portfolio Construction: Contemporary Applications of Markowitz Techniques. New York: Springer.
Guerard, J.B., Jr. and M. Takano. 1992. "The Development of Mean-Variance -Efficient Portfolios in Japan and the U.S." Journal of Investing 1.
Guerard, J.B. Jr., M Takano, and Y. Yamane. 1993. "The Development of Efficient Portfolios in Japan with Particular Emphasis on Sales and Earnings Forecasting." Annals of Operations Research 45, 91-108.
Guerard, J.B., Jr. and A. Mark. 2003. "The Optimization of Efficient Portfolios: The case for an R\&D Quadratic Term," Research in Finance 20, 213-247.
Guerard, J. B., Jr. 2004. "The Forecasting Effectiveness of the U.S. Leading Economic Indicators: Further Evidence and Initial G7 Results." In P. Dua, Ed., Business Cycles and Economic Growth: An Analysis Using Leading Indicators. New York: Oxford University Press, 174-187.
Guerard, J. B., Jr. 2001. "A Note on the Forecasting Effectiveness of the U.S. Leading Economic Indicators." Indian Economic Review 36, pp. 251-268.
Hamilton, J.D. 1994. Time Series Analysis, Princeton, Princeton University Press.
Hawkins, E.H., S.C. Chamberlain, and W.E. Daniel. 1984. "Earnings Expectations and Security Prices." Financial Analysts Journal 24-39.
Jenkins, G.M. 1979. Practical Experiences with Modelling and Forecasting Time Series. Jersey, Channel Islands: a GJP Publication.
Koopmans, T.C. 1947. "Measure without Theory." The Review of Economic Statistics, reprinted in R. Gordon and L. Klein, Readings in Business Cycles, Homewood, Illinois, Richard A. Irwin, Inc, 1965.
Krolzig, H-M. 2001. "Business Cycle Measurement in the Presence of Structural Change: International Evidence." International Journal of Forecasting 17, 349-368.
Lahiri, K. and G.H. Moore. 1991. Leading Economic Indicators. Cambridge, Cambridge University Press.
Latane, H.A. and C.P. Jones. 1977. "Standardized Unexpected Returns: A Progress Report." Journal of Finance 32, 1457-1465.
Ljung, G.M. and G.E.P. Box. 1978. "On a measure of lack of fit in time series models." Biometrika 65, 297-303.

Klein, L. 1985. Economic Theory and Econometrics. Philadelphia: University of Pennsylvania Press. Chapter 22.
Markowitz, H.M. 1952. "Portfolio Selection." Journal of Finance 7, 77-91.
Markowitz, H.M. 1959. Portfolio Selection: Efficient Diversification of Investment. Cowles Foundation Monograph No. 16. New York, John Wiley \& Sons.
Markowitz, H.M. 2000. Mean-Variance Analysis in Portfolio Choice and Capital Markets. New Hope, PA: Frank J. Fabozzi Associates.
Markowitz, H.M. 1976. "Investment in the Long Run: New Evidence for an Old Rule." Journal of Finance 31, 1273-1286.
Markowitz, H.M. and G. Xu. 1994. "Data Mining Corrections." Journal of Portfolio Management 21, 60-69.
Makridakis, S. and M. Hibon. 2000. "The M3-Competition: Results, Conclusions and Implications." International Journal of Forecasting 16, 451-476.
Makridakis, S., S.C. Wheelwright, and R. J. Hyndman. 1998. Forecasting: Methods and Applications, Third edition. New York: John Wiley \& Sons. Chapters 7 and 8.
McCracken, M. 2000. "Robust out-of-sample inference." Journal of Econometrics 39, 195-223.
McLeod, A.I. and W.K. Li. 1983. "Diagnostic checking ARMA time series models using squared residual autocorrelations." Journal of Time Series Analysis 4, 269-273.
Menchero, J. and D.J. Orr. 2012. "Improving Risk Forecasts for Optimized Portfolios." Financial Analysts Journal 68, 40-50.
Menchero, J., A. Morozov, and P. Shepard. 2010. "Global Equity Risk Modeling," In: J.B. Guerard, (ed.) The Handbook of Portfolio Construction: Contemporary Applications of Markowitz Techniques. New York: Springer.
Mincer, J. and V. Zarnowitz. (1969). "The Evaluation of Economic Forecasts," J. Mincer editor, Economic Forecasts and Expectations, New York, Columbia University Press.
Mitchell, W.C. 1913. Business Cycles. New York, Burt Franklin reprint.
Mitchell, W.C. 1951. What Happens During Business Cycles: A Progress Report. New York, NBER.
Moore, G.H. 1961. Business Cycle Indicators. 2 volumes, Princeton, Princeton University Press.
Nelson, C.R. and C.I. Plosser. 1982. "Trends and Random Walks in Macroeconomic Time Series." Journal of Monetary Economics 10, 139-162.
Nelson, C. R. 1973. Applied Time Series Analysis for Managerial Forecasts. San Francisco: Holden-Day. Chapters 5 and 6.
Montgomery, A.L., V. Zarnowitz, R.S. Tsay, and G.C. Tiao. 1998. "Forecasting the U.S. Unemployment Rate," Journal of the American Statistical Association 93, 478-493.
Pack, D. J. 1982. "A Practical Overview of ARIMA Models for Time Series Forecasting", in S. Makridakis and S. C. Wheelwright, Eds. The Handbook of Forecasting: A Manager's Guide. New York: John Wiley \& Sons.
Rosenberg, B. 1974. "Extra-Market Components of Covariance in Security Returns." Journal of Financial and Quantitative Analysis 9, 263-274.
Rosenberg, B. and V. Marathe, 1979. "Tests of Capital Asset Pricing Hypotheses." In: H. Levy, (ed.), Research in Finance 1, 115-123.
Rudd, A., and H.K.Clasing 1982. Modern Portfolio Theory, The Principles of Investment Management. Homewood, IL: Dow-Jones Irwin.
Rudd, A, and B. Rosenberg. 1979. "Realistic Portfolio Optimization." In: E. Elton, and M. Gruber, (ed.).Portfolio Theory, 25 Years After. Amsterdam: North-Holland.
Rudd, A. and B. Rosenberg. 1980. "The 'Market Model' in Investment Management." Journal of Finance 35, 597-607.
Sharpe, W.F. 1963. "A Simplified Model for Portfolio Analysis." Management Science 9.
Sharpe, W.F. 1964. "Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk." Journal of Finance 19, 425-442.
Stone, B.K. 1970. Risk, Return, and Equilibrium: A General Single-Period Theory of Asset Selection and Capital Market Equilibrium. Cambridge, MA: MIT Press.

Stone, B.K. 1973. "A Linear Programming Formulation of the General Portfolio Selection Problem." Journal of Financial and Quantitative Analysis 8, 621-636.
Stone, B.K. and J.B. Guerard, Jr. 2010a. Methodologies for Isolating and Assessing the Portfolio Performance Potential of Stock Return Forecast Models with an Illustration, In: J.B. Guerard, Jr., (ed.), The Handbook of Portfolio Construction: Contemporary Applications of Markowitz Techniques. New York: Springer.
Stone, B. K. and J.B. Guerard, Jr. 2010b. "Quantitative Stock Selection in Japan and the United States: Some Past and Current Issues." Presented at the CRSP Form, The University of Chicago, Chicago: IL, Nov. 4-5.
Tashman, L. 2000. "Out-of-sample tests of forecasting accuracy: an analysis and review." International Journal of Forecasting 16, 437-450.
Theil, H. 1966. Applied Economic Forecasting. Amsterdam, North-Holland.
Thomakos, D. and J. Guerard. 2004. "Naïve, ARIMA, Transfer Function, and VAR Models: A Comparison of Forecasting Performance." The International Journal of Forecasting 20, 53-67.
Vander Weide, J.H. 2010. "Principles for Lifetime Portfolio Selection: Lessons from Portfolio Theory," In: J. Guerard, (ed.), Handbook of Portfolio Construction: Contemporary Applications of Markowitz Techniques. New York: Springer.
Vining, R. 1949. "Koopmans on the Choice of Variables to be Studied and on Methods of Measurement." The Review of Economics and Statistics, reprinted in R. Gorgon and L. Klein, Readings in Business Cycles, Homewood, Illinois: Richard A. Irwin, Inc, 1965.

West, K. and M. McCracken. 1998. "Regression-based Tests of Predictive Ability." International Economic Review 39, 817-840.
Wheeler, L.B. 1994. "Changes in Consensus Earnings Estimates and Their Impact on Stock Returns." In: B. Bruce and C. B. Epstein (eds.). The Handbook of Corporate Earnings Analysis.
Zarnowitz, V. 2004. "The Autonomy of Recent US Growth and Business Cycles". In P. Dua, Ed., Business Cycles and Economic Growth: An Analysis Using Leading Indicators. New York: Oxford University Press, 44-82.
Zarnowitz, V. 2001. "The Old and the New in the U.S. Economic Expansion." The Conference Board. EPWP \#01-01.
Zarnowitz, V. and A. Ozyildirim. 2001. "On the Measurement of Business Cycles and Growth Cycles." Indian Economic Review 36, 34-54.
Zarnowitz, V. 1992. Business Cycles. Theory, History, Indicators, and Forecasting. Chicago, University of Chicago Press.
Ziemba, W.T. 1992. Invest Japan. Chicago: Probus Publishing Co.

Author Queries

Chapter No.: 3 192189_1_En

Chapter 4
 Regression Analysis and Multicollinearity:

In this chapter, we explore two applications of regression modeling: the question of 4 regression-weighting of GNP forecasts and the issue of estimating models 5 associated with security totals returns. We examine the forecasting of GNP by 6 major econometric firms and the modeling of security returns as a function of well- 7 known investment variables and strategies. We illustrate regression analysis and 8 problems with highly correlated independent variables. We will refer to the corre- 9 lation among independent variables as multicollinearity.

The first case study involves combining econometric services' forecasts of GNP. 11 In combining economic forecasts a problem often faced is that the individual 12 forecasts display some degree of dependence. We discuss latent root regression 13 (LRR) for combining collinear GNP forecasts. Guerard and Clemen (1989) results 14 indicate that LRR produces more efficient combining weight estimates (regression 15 parameter estimates) than ordinary least squares estimation (OLS), although out-of- 16 sample forecasting performance is comparable to OLS. Researchers appear to 17 have reached agreement, or consensus, regarding the value of combining forecasts. 18 Performance, measured in terms of a variety of error summary statistics, can be 19 improved by combining multiple forecasts. There is an extensive literature on 20 combining forecasts that can be traced back to Bates and Granger (1969), reached a 21 peak with Winkler and Makridakis (1983), Clemen and Winkler (1986), and Granger 22 (1989), and was documented in a bibliography by Clemen (1989). An important 23 unanswered question, however, regards what combination procedure to use. 24

There are many ways of determining these weights, and the aim was to choose a 25 method which was likely to yield low errors for the combined forecasts. Bates and 26 Granger, denoted as BG in many Granger references, (1969) assumed that 27 the performance of the individual forecasts would be consistent over time in the 28 sense that the variance of errors for the two forecasts could be denoted by $\sigma_{1}{ }^{2}$ and 29 $\sigma_{2}{ }^{2}$ for all values of time, t. It was further assumed that both forecasts would be 30 unbiased (either naturally or after a correction had been applied). The combined 31 forecast would be obtained by a linear combination of the two sets of forecasts, 32
giving a weight k to the first set of forecasts and a weight $(1-k)$ to the second set, thus making the combined forecast unbiased. The variance of errors in the combined forecast, σ_{c}^{2}, can then be written:

$$
\begin{equation*}
\sigma_{c}^{2}=k^{2} \sigma_{1}^{2}+(1-k)^{2} \sigma_{2}^{2}+2 \rho k \sigma_{1}(1-k) \sigma_{2}, \tag{4.1}
\end{equation*}
$$

where k is the proportionate weight given to the first set of forecasts and ρ is the correlation coefficient between the errors in the first set of forecasts and those in the second set. The choice of k should be made so that errors of the combined forecasts are small: more specifically, we chose to minimize the overall variance, σ_{c}^{2}. Differentiating with respect to k, and equating to zero, we get the minimum of σ_{c}^{2}, occurring when

$$
\begin{equation*}
k=\frac{\sigma_{2}^{2}-\rho \sigma_{1} \sigma_{2}}{\sigma_{1}^{2}-\sigma_{2}^{2}-2 \rho \sigma_{1} \sigma_{2}} . \tag{4.2}
\end{equation*}
$$

In the case where $\rho=0$, this reduces to

$$
\begin{equation*}
k=\sigma_{2}^{2} /\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right) \tag{4.3}
\end{equation*}
$$

It can be shown that if k is determined by (4.1), the value of σ_{c}^{2} is no greater than the smaller of the two individual variances.

The optimum value for k is not known at the commencement of combining forecasts. The value given to the weight k would change as evidence was accumulated about the relative performance of the two original forecasts. Thus the combined forecast for time period T, C_{T}, is more correctly written as

$$
\begin{equation*}
C_{T}=k_{T} f_{1, T}+\left(1-k_{T}\right) f_{2, T} \tag{4.4}
\end{equation*}
$$

where $f_{1, T}$ is the forecast at time T from the first set and $f_{2, T}$ is the forecast at time T from the second set.

Thought should be given to the possibility that the performance of one of the forecasts might be changing over time (perhaps improving) and that a method based on an estimate of the error variance since the beginning of the forecast might not therefore be appropriate.

Granger (1989) defined good forecasting methods (defined by us as those which yield low mean-square forecast error) are likely to possess properties such as:
(a) The average weight k should approach the optimum value, defined by (2), as the number of forecasts increased-provided that the performance of the forecasts is stationary.

[^13](b) The weights should adapt quickly to new values if there is a lasting change in 60 the success of one of the forecasts.
(c) The weights should vary marginally from the optimum value. 62

This last point is included since property (a) is not sufficient on its own. ${ }^{2} 63$ In addition to these properties, there has been an attempt to restrict methods to 64 those which are moderately simple, in order that they can be of use to businessmen. 65

Model building can be tested in combining forecasts. If we had available all the 66 information, the so-called perfect foresight answer, upon which all the forecasts 67 are based, then we would build the complete model. There would be no need for 68 out-of-sample or post-sample forecasting periods. In most cases, only the individual 69 forecasts are available, rather than the information they are based on, and so 70 combining is appropriate. In the BG combinations these data were not used 71 efficiently. For example, if $f_{n, 1}, g_{n, 1}$ are a pair of one-step forecasts of y_{n+1}, made 72 at time n, and if the y_{t} series as stationary, then the unconditional mean

$$
\begin{equation*}
m_{n}=\frac{1}{n} \sum_{j=1}^{n} y_{t-j} \tag{4.5}
\end{equation*}
$$

is also a forecast of y_{n+1} available at time n, although usually a very inefficient one. 74 This new forecast can be included in the combination, giving

$$
\begin{equation*}
c_{n+1}=\alpha_{1} m_{n}+\alpha_{2} f_{n, 1}+\alpha_{3} g_{n, 1} \tag{4.6}
\end{equation*}
$$

as the combined forecast. The weights α_{j} can be obtained by regressing $c_{n, 1}$ on $y_{n+1}{ }_{76}$ as discussed in Granger and Ramanathan (1984). Whether the weights α_{j} should add 77 to one depends on whether the forecasts are unbiased and the combination is 78 required to be unbiased. Before combining, it is usually a good idea to unbias the 79 component forecasts. Thus, if $w_{w, 1}$ is a set of one-step forecasts, run a regression 80

$$
\begin{equation*}
y_{n+1}=a+b w_{n, 1}+\varepsilon_{n+1} \tag{4.7}
\end{equation*}
$$

and check whether $a=0, b=1$, and if ε_{n} is white noise. If any of these conditions 81 do not hold, an immediately apparently superior forecast can be achieved and these 82 should be used in any combination.

In all these extensions of the original combining technique, combinations have 84 been linear, only single-step horizons are considered, and the data available 85 have been assumed to be just the various forecasts and the past data of the series 86 being forecast. On this last point, it is clear that other data can be introduced to 87 produce further forecasts to add to the combinations, or Bayesian techniques could 88

[^14]be used to help determine the weights. The fact that only linear combinations were being used was viewed as an unnecessary restriction from the earliest days, but sensible ways to remove this estimation were unclear.

Procedures suggested by Bates and Granger (1969), with subsequent extensions and applications by Newbold and Granger (1974) and Winkler (1981) among others, model the forecast errors with a multinormal process, the parameters of which determine the combining weights. A number of alternative combining procedures have also been proposed, including simple averages (Makridakis and Winkler 1983), unrestricted regressions (Granger and Ramanathan 1984), weighting procedures based on assessments of which forecast might perform best (Bunn 1975; Clemen and Guerard 1989), and various ad hoc procedures (Ashton and Ashton 1985). The basic question is whether equally weighted composite forecasting models outperform statistically based forecast models.

In developing composite models using the multinormal model or related regression approaches one major problem is that the covariance matrix must typically be estimated with relatively small quantities of data. This results in unstable estimation of the covariance matrix and even more unstable estimation of the combining weights (Kang 1986). Furthermore, for economic forecasting the problem is exacerbated by the fact that different forecaster errors are typically highly correlated; correlations above 0.8 are not at all unusual (Clemen and Winkler 1986; Figlewski and Urich 1983).

We explore the possibility of using LRR (Webster et al. 1974; Gunst et al. 1976) as a procedure for combining dependent forecasts. This approach provides an explicit framework for analysis of collinear data through the mathematics of latent roots and vectors. The data we analyze (GNP forecasts studied in Clemen and Winkler 1986) display pairwise correlations of forecast errors between 0.82 and 0.96. Given these relatively high correlations as well as Kang's demonstration of the instability of the estimated weights in this data set, it seems reasonable to think that LRR might improve on the performance of OLS

We assume that at time $t-1$ we have access to k forecasts, $f_{t}=\left(f_{1 t}, \ldots, f_{k t}\right)$, for θ_{t}. We can write θ_{t} stochastically in terms of the (possibly biased) forecasts $f_{i t}$:

$$
\begin{equation*}
\theta_{t}=a_{i}+b_{i} f_{i t}+u_{i t} \tag{4.8}
\end{equation*}
$$

where each $u_{t}=\left(u_{l t}, \ldots, u_{k t}\right)^{\prime}$ is an independent realization from a normal process with mean vector $(0, \ldots, 0)^{\prime}$ and covariance matrix \sum. At time $t-1$, we have available past observations (forecasts and actual values) for time $t=1, \ldots, t-1$. To represent these data we will adopt the following notation:

$$
[\theta, F]=\left(\begin{array}{ccccc}
\theta_{1} & 1 & f_{1,1} & \ldots & f_{k, 1} \tag{4.9}\\
\cdot & \cdot & \cdot & & \cdot \\
\theta_{t-1} & 1 & f_{1, t-1} & \ldots & f_{k, t-1}
\end{array}\right)
$$

We include the vector of ones because, in general, we will be estimating regression coefficients including a constant term.

Multiply each of the different equations (4.9) by a factor $\gamma_{\underline{i}}$ such that $\sum \gamma i=1 .{ }_{126}$ Then combine equation (4.1) to obtain the following regression representation: 127

$$
\begin{align*}
\theta_{t} & =\sum \gamma_{i} a_{i}+\sum \gamma_{i} b_{i} f_{i t}+\sum \gamma_{i} \mu_{i t} \\
& =\beta_{0}+\beta_{1} f_{1 t}+\ldots+\beta_{k} f_{k t}+\varepsilon_{t} \\
& =f_{t}^{*} \beta+\varepsilon_{t} \tag{4.10}
\end{align*}
$$

where

$$
\begin{aligned}
\beta & =\left(\beta_{0}, \ldots, \beta_{k}\right)^{\prime}=\left(\sum \gamma_{i} a_{i}, \gamma_{1} b_{1}, \ldots, \gamma_{k} b_{k}\right)^{\prime} \\
f_{t}^{*} \beta & =\left(1, f_{1 t}, \ldots, f_{k t}\right)
\end{aligned}
$$

and

$$
\varepsilon_{t}=\sum \gamma_{i} \mu_{i t}
$$

The distributional assumptions regarding μ_{t} imply that the regression equation error terms ε_{t} obey standard OLS assumptions. Therefore, the OLS estimator of β is 131 given by the familiar expression

$$
\begin{equation*}
\beta^{*}=\left(F^{\prime} F\right)^{-1} F^{\prime} \theta \tag{4.11}
\end{equation*}
$$

As usual, β^{*} is the best linear unbiased estimator of β, and, assuming stationarity 133 of the process through time, the forecast $\theta_{t}^{*}=f_{t}^{*} \beta^{*}$ is the best linear unbiased 134 predictor of θ_{t}.

In the event of multicollinearity in the F matrix, β^{*} (and hence θ_{t}^{*}) can be 136 inefficient. If the process is stationary, one solution to the problem of multicollinear 137 regressors is simply to acquire more data to improve the efficiency of the estima- 138 tion, thereby improving prediction performance. However, this is often not possi- 139 ble, especially when working with economic data. Thus, there is some motivation to 140 consider biased estimation and prediction if the biased approach might yield a 141 substantial improvement in terms of estimation efficiency. LRR is one such tech- 142 nique. The following is a brief description of the procedure, abstracted from 143 Webster et al. (1974) and Gunst et al. (1976). We direct the interested reader to 144 those papers for more details.

LRR seeks to identify near-singularities in the explanatory variables and to 146 determine their predictive value. The procedure uses this information to estimate 147 the regression parameters β by adjusting for non-predictive near-singularities. 148 Define the matrix A to be $n \times(k+1)$ data matrix containing standardized- 149 dependent and -independent variables. The correlation matrix $\left(A^{\prime} A\right)$ has latent 150 roots λ_{i} and corresponding latent vectors α_{i} defined by

$$
\left|A^{\prime} A-\lambda_{i} I\right|=0
$$

152 and

$$
\left(A^{\prime} A-\lambda_{i} I\right) \alpha_{i}=0 .
$$

Denote the elements of α_{i} by

$$
\alpha_{i}^{\prime}=\left(\alpha_{0 i}, \alpha_{1 i}, \ldots, \alpha_{k i}\right)
$$

154 and

$$
\alpha_{i}^{0^{\prime}}=\left(\alpha_{1 i}, \ldots, \alpha_{k i}\right)
$$

That is, α_{i}^{0} contains all of the elements of α_{i} except tile first one. Also, define

$$
\eta^{2}=\Sigma\left(\theta_{i}-\theta\right)^{2} .
$$

156
The OLS estimator β^{*} can be written as

$$
\beta^{*}=-\eta \Sigma c_{i} \alpha_{i}^{0},
$$

157 where

$$
\begin{equation*}
c_{i}=\alpha_{0 i} \lambda_{i}^{-1}\left(\Sigma \alpha_{0}^{2} / \lambda_{j}\right)^{-1} \tag{4.12}
\end{equation*}
$$

158 Values of λ_{i} and $\alpha_{0 i}$ close to zero indicate a non-predictive near-singularity. 159 As $\alpha_{0 i}$ becomes close to zero, c_{i} should also be close to zero. However, since λ_{i} is 160 also small, c_{i} may be quite large, and may have a dominant effect in the estimate β^{*}.
161 Gunst et al. (1976) suggest setting $c_{i}=0$ for $\left|\lambda_{I}\right| \leq 0.3$ and $\left|\alpha_{0 i}\right| \leq 0.1$, thus 162 obtaining the LRR estimate of the parameter β. Webster et al. (1974) and Gunst 163 et al. (1976) provide detailed geometrical interpretations and discussion of this 164 technique.

165 The First Example: Combining GNP Forecasts
166 Clemen and Winkler (1986) studied the forecasting efficiency of Gross National 167 Product (GN) forecasting services in the mid-1980s, using data from the fourth 168 quarterly of 1970 to the fourth quarter of 1983. Wharton Econometrics (Wharton), 169 Chase Econometrics (Chase), Data Resources, Inc. (DRI), and the Bureau of

Economic Analysis (BEA) made quarterly forecasts of many economic variables. 170 Clemen and Winkler (1986) used level forecasts of nominal GNP (1970-1983), 171 obtained directly from Wharton and BEA and from the Statistical Bulletin 172 published by the Conference Board for Chase and DRI to construct growth rate 173 forecasts (in percentage terms), and calculated the deviations from actual growth as 174 determined from GNP reported in Business Conditions Digest. Forecasts with four 175 different horizons (one, two, three, and four quarters) were analyzed. For example, 176 the four-quarter GNP forecast predicts the percentage change for the 3-month 177 AU1 period four quarters in the future (counting the current one). Finally, the data are 178 divided into two periods, one for estimation and one for forecast evaluation. 179 The estimation period runs through 1979 for each horizon, with the remaining 180 data kept in reserve as an independent sample for forecast evaluation. For analysis 181 of the individual forecasts, the reader is referred to Clemen and Winkler (1986) and 182 Clemen (1986).

Clemen and Guerard (1989) tested LRR as a combining technique because of the 184 high pairwise correlations among the individual forecasts and the instability of 185 the estimated weights, noted by Kang (1986). However, while these observations 186 suggest multicollinearity, we have no clear indication of the severity of the problem. 187 Belsley et al. (1980) and Belsley $(1982,1984)$ have discussed diagnostics for explicit 188 AU2 measurement of the severity of multicollinearity. We calculated variance inflation 189 factors, condition indexes, and variance-decomposition proportions for each of the 190 four forecast horizons. These diagnostics are reported in Table 4.1. For condition 191 numbers (defined as the largest of the condition indexes), the value 30 is suggested as 192 a screen; situations with larger values are then examined more closely. All our 193 condition numbers are between 20 and 30; thus, on the basis of this diagnostic alone 194 our data do not appear to display severe multicollinearity. For variance inflation 195 factors (VIFs), Montgomery and Peck (1982) suggest that values from 5 to 10196 indicate severe multicollinearity. Our VIFs range up to 4.6. Variance-decomposition 197 proportions can also be used to detect multicollinearity, which is indicated by two 198 numbers exceeding 0.5 in any one row of the variance-decomposition table. For our 199 forecasts, the variance-decomposition calculations reveal collinearity between (1) 200 the DRI and BEA forecasts in the one- and two-quarter horizons, (2) the Wharton 201 and BEA forecasts in the three-quarter one, and (3) the Chase and DRI as well as the 202 constant and BEA variables in the four-quarter horizon. ${ }^{3}$ 203

To some extent, the use of these diagnostics is problematic. For instance, 204 condition indexes are based on eigenvalues (latent roots) of the sample covariance 205 matrix, and it is unclear to what extent models built and estimated on the basis of 206 this diagnostic might be sensitive for relatively small sample sizes. The presence 207

[^15]Table 4.1 Multicollinearity diagnostics for GNP forecasts

		Variance-decomposition proportions				
Horizon	Condition indexes	Constant	Wharton	Chase	DRI	BEA
1	9.78	0.68	0.00	0.03	0.02	0.07
	15.80	0.04	0.01	0.00	0.56	0.63
	17.65	0.01	0.03	0.73	0.30	0.30
	20.93	0.27	0.96	0.24	0.11	0.00
	VIF		3.38	3.86	3.25	3.24
	11.06	0.55	0.25	0.14	0.00	0.01
	12.58	0.17	0.60	0.13	0.01	0.13
	14.06	0.16	0.11	0.62	0.01	0.23
	27.41	0.11	0.04	0.11	0.98	0.63
	VIF		1.85	2.25	4.60	3.23
	10.94	0.71	0.00	0.26	0.01	0.00
	13.69	0.23	0.42	0.44	0.01	0.01
	18.98	0.06	0.50	0.27	0.09	0.53
	22.24	0.00	0.08	0.03	0.88	0.46
	VIF		2.54	2.40	3.93	3.27
	7.36	0.05	0.84	0.01	0.00	0.00
	11.14	0.29	0.06	0.29	0.09	0.01
	16.39	0.01	0.03	0.62	0.84	0.00
	22.86	0.65	0.06	0.07	0.07	0.98
	VIF		1.52	2.31	2.54	2.22

of a condition index greater than 30 may be a reliable indicator of multicollinearity; however, values slightly less than 30 do not necessarily mean that effects due to multicollinearity will be unnoticeable. With regard to the variance-decomposition proportions, the Guerard and Clemen (1989) results indicated that the one-quarter DRI and BEA forecasts appear to be associated with an ill-conditioned covariance matrix. That is, the correlation coefficient between the one-quarter DRI and BEA (0.82 , reported in Clemen and Winkler 1986) is the least of the pairwise correlations for this horizon. Likewise, the correlation between Wharton and BEA errors in the two-quarter analysis (0.94) is the second-lowest of the reported pairwise correlations. Given these observations, it seems reasonable to conclude that multicollinearity, perhaps at a relatively low level, was present in the Guerard and Clemen (1989) data.

Application of LRR, using the Gunst et al. (1976) criteria for vector deletion, produced the results shown in Table 4.2. Details regarding the latent roots and vectors and the vector deletion patterns for each analysis are available from the authors. The coefficient estimates for the Chase and DRI forecasts are highly significant in the one-quarter horizon. In the two-quarter horizon, coefficient estimates for DRI and BEA are significant, as is the DRI coefficient estimate in the three-quarter horizon.

Table 4.2 LRR and OLS regression results
Table 4.2 LRR and OLS regression results t2.1

Horizon		Constant	Wharton	Chase	DRI	BEA	R^{2}	t2.2
1	LRR	1.30	$\begin{aligned} & \hline-0.23 \\ & (-0.58) \end{aligned}$	$\begin{aligned} & 0.96 \\ & (2.83)^{\mathrm{a}} \end{aligned}$	$\begin{aligned} & 0.37 \\ & (4.93) \mathrm{a} \end{aligned}$	$\begin{aligned} & \hline-0.11 \\ & (-1.78) \end{aligned}$	0.40	t2.3
	OLS	2.18	$\begin{aligned} & -0.53 \\ & (-1.28) \end{aligned}$	$\begin{aligned} & 0.65 \\ & (1.66) \end{aligned}$	$\begin{aligned} & 0.33 \\ & (0.92) \end{aligned}$	$\begin{aligned} & 0.48 \\ & (1.43) \end{aligned}$	0.46	t2.4
2	LRR	1.71	$\begin{aligned} & 0.08 \\ & (0.24) \end{aligned}$	$\begin{aligned} & -0.25 \\ & (-0.69) \end{aligned}$	$\begin{aligned} & 0.41 \\ & (2.52)^{\mathrm{a}} \end{aligned}$	$\begin{aligned} & 0.63 \\ & (2.31)^{\mathrm{a}} \end{aligned}$	0.24	t2.5
	OLS	1.48	$\begin{aligned} & 0.06 \\ & (0.20) \end{aligned}$	$\begin{aligned} & -0.28 \\ & (-0.76) \end{aligned}$	$\begin{aligned} & 0.59 \\ & (0.87) \end{aligned}$	$\begin{aligned} & 0.52 \\ & (1.10) \end{aligned}$	0.24	t2.6
3	LRR	4.17	$\begin{aligned} & 0.16 \\ & (0.39) \end{aligned}$	$\begin{aligned} & -0.62 \\ & (-1.60) \end{aligned}$	$\begin{aligned} & 0.32 \\ & (2.56)^{\mathrm{a}} \end{aligned}$	$\begin{aligned} & 0.76 \\ & (1.56) \end{aligned}$	0.18	t2.7
	OLS	4.17	$\begin{aligned} & 0.21 \\ & (0.46) \end{aligned}$	$\begin{aligned} & -0.59 \\ & (-1.53) \end{aligned}$	$\begin{aligned} & 0.20 \\ & (0.34) \end{aligned}$	$\begin{aligned} & 0.82 \\ & (1.47) \end{aligned}$	0.18	t2.8
4	LRR	8.69	$\begin{aligned} & -0.09 \\ & (-0.40) \end{aligned}$	$\begin{aligned} & -0.60 \\ & (-1.69) \end{aligned}$	$\begin{aligned} & 0.96 \\ & (2.03) \end{aligned}$	$\begin{aligned} & -0.08 \\ & (-0.36) \end{aligned}$	0.12	t2.9
	OLS	10.92	$\begin{aligned} & -0.06 \\ & (-0.28) \end{aligned}$	$\begin{aligned} & -0.47 \\ & (-1.10) \end{aligned}$	$\begin{aligned} & 1.10 \\ & (2.39)^{a} \end{aligned}$	$\begin{aligned} & -0.63 \\ & (-0.96) \end{aligned}$	0.17	t2.10

Values in parentheses are t-statistics
${ }^{\text {a }}$ Significance at the 0.05 level

Table 4.3 Performance of combining methods for the post-estimation evaluation period shown t3.1

Horizon	Evaluation period	Equal weights	OLS	LRR	t3.2
1	$80.1-82.2$	2.47	2.89	2.76	t3.3
2	$80.1-82.3$	3.60	4.19	4.40	t3.4
3	$80.1-82.4$	4.35	4.58	4.49	t3.5
4	$80.1-83.1$	4.45	3.67	3.71	t3.6

For comparison, OLS results are also included in Table 4.2. Generally speaking, 227 LRR and OLS produced coefficient estimates that are comparable in terms of signs 228 and relative sizes. (While this comparison is a matter of degree, two exceptions are 229 BEA in the one- and four-quarter horizons). On the other hand, LRR generally 230 yielded more efficient estimates of the parameters than OLS, as measured by the 231 t-statistics. 232
The true test of a forecasting procedure is how well it performs outside of the 233 fitting data. Table 4.3 presents the results obtained by using the estimated models to 234 predict actual nominal GNP for the evaluation periods shown. Guerard and Clemen 235 (1989) included the arithmetic average (equal weights) as one of the combining 236 procedures for use as a benchmark. The performance measure we used, mean 237 absolute relative error, is mean absolute percentage error (MAPE) divided by 238 100. MAPE is a widely used forecast performance measure that allows performance 239 comparisons among different forecast situations (see Armstrong 1985). The results 240
in Table 4.3 show that OLS and LLR performed comparably. Given the similar estimates of the combining weights in the two analyses, this result is not surprising. The equal weights combination outperformed the regression model in all but the four-quarter horizon.

The Guerard and Clemen (1989) empirical results show that LRR produced more efficient parameter estimates than OLS. However, the similar out-of-sample performance of the two methods leads us to be somewhat ambivalent. In theory, LRR's more efficient estimation of parameters should result in more efficient predictors and hence better out-of-sample prediction performance. In light of the data's high correlations, Kang's results, and Clemen's and Winkler's (1986) results from combining these GNP forecasts using a Bayesian model, Guerard and Clemen (1989) concluded that the comparable performance of LRR and OLS is troubling. Compared to OLS, Clemen's and Winkler's Bayesian model resulted in forecasting performance improvements of about 16% in terms of mean squared error. One possible interpretation might be that Clemen's and Winkler's model, being mathematically similar to ridge regression (Lindley and Smith 1972; Hocking 1976), tended to counteract the dependence among the forecasts. Of course, other techniques are available for use with collinear data, notably principal components regression (Gunst et al. 1976) and LRR. The Guerard and Clemen (1989) motivation for trying LRR was that it differs fundamentally from ridge regression (and the related Clemen/Winkler model) in the way multicollinearity is handled. Where ridge regression depends on the estimation of a biasing parameter, principal components regression and LRR are estimated by the elimination of non-predictive nearsingularities as described above. However, the Guerard and Clemen (1989) GNP forecasts appeared to be collinear enough to cause some difficulty in the OLS analysis, but not severe enough for LRR to dominate OLS.

The Second Example: Modeling the Returns of the US Equities

Our second example will address the estimations of the determinants of the US equity security monthly returns. In 1990, Harry Markowitz became the Head of the Global Portfolio Research Department (GPRD) at Daiwa Securities Trust. His department used fundamental data to create models for Japanese and the US securities and the researchers tested single variable and regression-weighted composite model strategies for Japan and the USA over 1974-1990. The GPRD analysis builds upon Guerard and Takano (1991) and Guerard (1990) framework. We refer the reader to those studies and the work of Savita Subramanian at Bank of America Merrill Lynch for testing these variables, and many other strategies in the US equity market. The quantitative work of Subramanian is some of the best "sell side" research, in the opinion of the author. ${ }^{4}$ In this section, we review and revisit the GPRD regression

[^16]analysis. ${ }^{5}$ Guerard and Takano used book value, cash flow, and sales, relative to price, 279 AU3 in their analysis. The major papers on combination of value ratios to predict stock 280 returns that include at least CP and/or SP include Chan et al. (1991), Bloch et al. 281 (1993), Lakonishok et al. (1994), and Haugen and Baker (2010). In fact, the Bloch 282 AU4 et al. (1993) was a more technical version of Guerard and Takano (1991). 283

The composite models could be created by combining variables using OLS, 284 outlier-adjusted or robust regression (ROB), or weighted latent root regression 285 (WLRR) modeling, in which outliers and the high correlations among the variables 286 are used in the estimation procedure. The reader is referred to Bloch et al. (1993) for 287 a discussion of ROB and WLRR techniques. ${ }^{6}$ The Markowitz group found that the 288 AU5 use of the more advanced statistical techniques produced higher relative out-of- 289 sample portfolio geometric returns and Sharpe ratios. Statistical modeling is not just 290 fun, but it is also consistent with maximizing portfolio returns. The quarterly 291 estimated models outperformed the semiannual estimated models, although the 292 underlying data was semiannual in Japan. The dependent variable in the composite 293 model is total security quarterly returns and the independent variables are the EPR, 294 BPR, CPR, and SPR variables. The ultimate test of OLS, ROB, and WLRR 295 analyses can be found in the Bloch et al. (1993) simulations which reported higher 296 Geometric Means, Sharpe Ratios, and F-Statistics using WLRR than OLS in 297 estimating models of the determinants of monthly security returns. The Bloch 298 et al. research (1993) has been reestimated, updated, and enhanced in Guerard 299 (2006), Stone and Guerard (2010), and Guerard et al. (2012).

Let us discuss two enhancements in the Guerard et al. (2012) study: the addition of 301 price momentum and earnings per share (eps) forecasts, revisions, and breadth 302 variables. Earnings forecasting enhances returns relative to using only reported 303 financial data and valuation ratios. In 1975, a database of eps forecasts was created 304

[^17]by Lynch, Jones, and Ryan, a New York brokerage firm, by collecting and publishing the consensus statistics of 1-year-ahead and 2-year-ahead eps forecasts [Brown (1999)]. The database evolved to become known as the Institutional Brokerage Estimation Service ($\mathrm{I} / \mathrm{B} / \mathrm{E} / \mathrm{S}$) database. There is an extensive literature regarding the effectiveness of analysts' earnings forecasts, earnings revisions, earnings forecast variability, and breadth of earnings forecast revisions, summarized in Bruce and Epstein (1994), Brown (1999), and Ramnath et al. (2008). The vast majority of the earnings forecasting literature in the Bruce and Brown references find that the use of earnings forecasts does not increase stockholder wealth, as specifically tested in Elton et al. (1981) in their consensus forecasted growth variable, FGR. Reported earnings follow a random walk with drift process, and analysts are rarely more accurate than a no-change model in forecasting eps [Cragg and Malkiel (1968)]. Analysts become more accurate as time passes during the year, and quarterly data are reported. Analyst revisions are statistically correlated with stockholder returns during the year [Hawkins et al. (1984) and Arnott (1985)]. Wheeler (1994) developed and tested a strategy in which analyst forecast revision breadth, defined as the number of upward forecast revisions subtracted by the number of downward forecast revisions, divided by the total number of estimates, was the criteria for stock selection. Wheeler found statistically significant excess returns from the breadth strategy. A composite earnings variable, CTEF, is calculated using equally weighted revisions, RV; forecasted earnings yields, FEP; and breadth, BR, of FY1 and FY2 forecasts, a variable put forth in Guerard (1997) and further tested in Guerard et al. (1997). Adding I/B/E/S variables in the form of CTEF added to the eight value ratios in Guerard and Takano (1991) produced more than 2.5% of additional annualized return [Guerard et al. (1997)]. The finding of significant predictive performance value for $\mathrm{I} / \mathrm{B} / \mathrm{E} / \mathrm{S}$ variables indicates that analyst forecast information has value beyond purely statistical extrapolation of past value and growth measures. Guerard (2006) reported the growing importance of earnings forecasts, revisions, and breadth in Japan and the USA, particularly with respect to smaller capitalized securities.

Momentum investing was studied by academics at about the same time that earnings forecasting studies were being published. Levy (1967), Arnott (1979), and Brush and Boles (1983) found statistically significant power in relative strength. The Brush and Boles analysis was particularly valuable because it found that the short-term (3-month) financial predictability of a naïve monthly price momentum model, taking the price at time $t-1$ divided by the price 12 months ago, $t-12$, was as statistically significant at identifying underpriced securities as using the alpha of the market model adjusted for the security beta. Brush and Boles found that beta adjustments slightly enhanced the predictive power in the 6-12-month periods. Brush (2001) is an excellent 20-year summary of the price momentum literature. Fama and French $(1992,1995)$ used a price momentum variable using the price 2 months ago divided by the price 12 months ago, thus avoiding the well-known return or residual reversal effect. The Brush et al. (2004) and Fama studies find significant stock price anomalies, even with Korajcyk and Sadka using transactions costs. The vast majority find that the use of $3-$, 6 -, and 12 -month price momentum

AU7

AU8

AU9

AU10

AU11

AU12

AU13
AU14

AU15

AU16
variables, often defined as intermediate-term variables, is statistically significantly 349 associated with excess returns.

Guerard et al. (2012) added a Brush-based price momentum: taking the price at 351 time $t-1$ divided by the price 12 months ago, $t-12$, denoted PM, and the 352 consensus analysts' earnings forecasts and analysts' revisions composite variable, 353 CTEF, to the stock selection model, one can estimate an expanded stock selection 354 model to use as an input to an optimization analysis. The stock selection model 355 estimated in this chapter, denoted as the United States Expected Returns, USER, is 356

$$
\begin{align*}
T R_{t+1}= & a_{0}+a_{1} E P_{t}+a_{2} B P_{t}+a_{3} C P_{t}+a_{4} S P_{t}+a_{5} R E P_{t}+a_{6} R B P_{t} \\
& +a_{7} R C P_{t}+a_{8} R S P_{t}+a_{9} C T E F_{t}+a_{10} P M_{t}+e_{t} \tag{4.13}
\end{align*}
$$

where: 357
$\mathrm{EP}=$ [earnings per share]/[price per share] $=$ earnings-price ratio; $\quad 358$
$\mathrm{BP}=$ [book value per share $] /[$ price per share $]=$ book-price ratio; $\quad 359$
$\mathrm{CP}=$ [cash flow per share]/[price per share] $=$ cash flow-price ratio; $\quad 360$
$\mathrm{SP}=[$ net sales per share] $/[$ price per share $]=$ sales-price ratio; 361
REP $=$ [current EP ratio]/[average EP ratio over the past 5 years]; 362
$\mathrm{RBP}=$ [current BP ratio]/[average BP ratio over the past 5 years]; 363
RCP $=$ [current CP ratio]/[average CP ratio over the past 5 years]; 364
RSP $=$ [current SP ratio]/[average SP ratio over the past 5 years]; 365
$\mathrm{CTEF}=$ consensus earnings-per-share $\mathrm{I} / \mathrm{B} / \mathrm{E} / \mathrm{S}$ forecast, revisions, and breadth; 366
PM = Price Momentum; and 367
$\mathrm{e}=$ randomly distributed error term. $\quad 368$
The USER model is estimated using WLRR analysis in (4.13) to identify variables 369 statistically significant at the 10% level; uses the normalized coefficients as weights; 370 and averages the variable weights over the past 12 months. The 12-month smoothing 371 is consistent with the four-quarter smoothing in Guerard and Takano (1991) and 372 AU17 Bloch et al. (1993).

373
While EP and BP variables are significant in explaining returns, the majority of 374 the forecast performance is attributable to other model variables, namely, the 375 relative earnings-to-price, relative cash-to-price, relative sales-to-price, price 376 momentum variable, and earnings forecast variable. The consensus earnings 377 forecasting variable, CTEF, and the price momentum variable, PM, dominate the 378 composite model, as is suggested by the fact that the variables account for 45% of 379 the model average weights.

Earnings forecasts, revisions, and directions of revisions are key variables in stock 381 selection modeling. The asset selection of the CTEF variable is highly significant, see 382 Guerard (2012). The average our-quarter smoothed regression coefficients are: 383 Time-average value of estimated coefficients: 384

a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	a_{6}	a_{7}	a_{8}	a_{9}	a_{10}	385
0.044	0.038	0.020	0.038	0.089	0.086	0.187	0.122	0.219	0.224	386

t4.6

In terms of information coefficients, ICs, the use of the WLRR procedure produces the higher IC for the models during the 1998-2007 time period, 0.043, versus the equally weighted IC of 0.040 , a result consistent with the previously noted studies.

Let us examine the WLRR SAS output for estimating (4.13) using OLS, ROB using the Beaton-Tukey approximation, and the WLRR techniques for the month of January 2008.

The EP, RCP, RSP, and CTEF variables have the (correct) positive coefficients and are statistically significant in the OLS regression, having t-values that exceed 1.645 , the critical 10% level; see Table 4.4. The regression F-statistic of 28.53 indicates that the overall regression is highly statistically significant for the 3,482 firm sample in January 2008. The adjusted R-squared statistic of 0.073 is quite high for cross-sectional regressions (across securities, at one point in time). The F-Statistic of 28.53 is statistically significant at the 1% level. The estimated OLS regression is plagued by outliers, as one sees in Fig. 4.1. The studentized residuals, RStudent, discussed in Chap. 2 and shown in Fig. 4.1, indicate the presence of outliers. A scaled residual known as the Cook distance measure, CookD, or Cook's D, also is shown in Fig. 4.1 and confirms the RStudent result.

Fig. 4.1 OLS regression diagnostics

Most of the USER variables are associated with OLS outliers, see Fig. 4.2. The 405 BP, CP, SP, RSP, and PM variables are particularly associated with outliers in 406 the January 2008 regression, Fig. 4.3.

The application of the Beaton-Tukey (BT) outlier-adjustment procedure, used in 408 Bloch et al. (1993), increases the F-Statistics from its OLS value of 28.53 to 34.22 .409 Please see Table 4.5. The BT procedure produces positive and statistically signifi- 410 cant coefficients on the EP, RSP, and EF (CTEF) variables. The BT procedure 411 reduces the studentized residuals and Cook's D calculated values. Thus, the effect 412 of outliers has been substantially reduced by the Beaton-Tukey Robust Regression 413 application.

The application of the principal components regression analysis, WIPC, in the 415 SAS proc IML procedure approximates of Bloch et al. WLRR. The WIPC 416

Fig. 4.2 OLS residuals by independent variables
regression analysis shows that the weighted EP, CP, RSP, and CTEF variables are 417 highly statistically significantly associated with security returns in January 2008. WRDS WIPC 0801

VARN	PC9S	TPC9	420
WEP0801	0.044	4.618	421
WBP0801	-0.023	-3.112	422
WCP0801	0.035	4.506	423
WSP0801	-0.020	-2.672	424
WREP0801	0.011	0.992	425
WRBP0801	0.008	0.489	426
WRCP0801	0.018	1.352	427
WRSP0801	0.127	6.615	428
WEF0801	0.138	5.462	429
WPM0801	-0.190	-9.768	430

Fit Diagnostics for WTR0801

This figure will be printed in b / w
Fig. 4.3 Robust regression diagnostics-dependent variable: WTR0801

Fig. 4.3 (continued)

The F-Statistic of ROB exceeds the OLS F-Statistic approximately 90% of the 431 months. The ultimate test of OLS, ROB, and WLRR analyses can be found in the 432 Bloch et al. simulations which report higher Geometric Means, Sharpe Ratios, and 433 F-Statistics using WLRR than OLS in estimating models of the determinants of 434 monthly security returns. Moreover, regression weighting of variables 435 outperformed equally weighting the variable in security returns models. We have 436 briefly surveyed the academic literature on anomalies and found substantial evi- 437 dence that valuation, earnings expectations, and price momentum variables are 438 significantly associated with security returns. Further evidence on the anomalies is 439 found in Levy (1999). ${ }^{7}$ We will create portfolios with the USER Model in Chap. 644 and explore more regression modeling of global returns in Chap. 7.

Summary and Conclusions

We have used two case studies to illustrate the effectiveness of regression 443 modeling. Regression analysis offered marginal improvement in the case of com- 444 bining GNP forecasts, but offered substantial improvement in identifying financial 445

[^18]- Cash Flow-to-Price is the 12-month trailing cash flow-per-share divided by the current price.
- Earnings-to-Price is the 12-month trailing earnings-per-share divided by the current price.
- Return on Assets is the 12 -month trailing total income divided by the most recently reported total assets.
- Residual Risk is the trailing variance of residual stock return unexplained by market return.
- 12-month Return is the total return for the stock over the trailing 12 months.
- Return on Equity is the 12 -month trailing eps divided by the most recently reported book equity.
- Volatility is the 24-month trailing volatility of total stock return.
- Book-to-Price is the most recently reported book value of equity divided by the current market price.
- Profit Margin is 12-month trailing earnings before interest divided by 12-month trailing sales.
- 3-month Return is the total return for the stock over the trailing 3 months.
- Sales-to-Price is 12 -month trailing sales-per-share divided by the market price.

The four measures of cheapness in the USER model: cash-to-price, earnings-to-price, book-toprice, and sales-to-price, all have significant positive payoffs. Haugen and Baker (2010) find statistically significant results for the four fundamental factors as did the previously studies we reviewed. The Haugen and Baker (2010) analysis and results are consistent with the Bloch et al. (1993) model.
t5.1 Table 4.5 ROB NREG0801 the REG procedure model: MODEL1-dependent variable: WTR0801

t5.2	Number of observations read	3,475
t5.3	Number of observations used	3,475

t5.4 Analysis of variance

446 variables associated with security returns. Regression models addressing outliers 447 and multicollinearity problems outperformed equally weighted strategies in stock 448 selection modeling.

449

References

Armstrong, J.S., Long Range Forecasting: From Crystal Ball to Computer, $2^{\text {nd }}$ edition New York: Wiley, 1985.
Ashton, A.H. and Ashton, R.H. 1985. "Aggregating Subjective Forecasts: Some Empirical Results'. Management Science 31, 1499-1508.
Bates, J.M. and Granger, C.W.J.1969. "The Combination of Forecasts". Operations Research Quarterly 20 , 451-468.
Belsley, D.A. 1982. "Assessing the Presence of Harrmful Collinearity and other Forms of Weak Data through a Test for Signal-to-Noise". Journal of Econometrics 20, 211-53.
458 Belsey, D.A., 1984. "Collinearity and Forecasting'. Journal of Forecasting, 3, 183-96.
459 Belsey, D.A., Kuh, E. and Welsch, R.E. 1980. Regression Diagnostics, New York: Wiley.

Blin, J.M. S. Bender, and J. B.Guerard, Jr. 1997. "Earnings Forecasts, Revisions and Momentum in 460 the Estimation of Efficient Market-Neutral Japanese and U.S. Portfolios." In Research in 461 Finance 15, edited by A. Chen.
Blin, J.M. S. Bender, and J. B.Guerard, Jr. 1995. "Why Your Next Japanese Portfolio Should be 463 Market-Neutral- And How". Journal of Investing 4, 33-40.

464
Bloch, M., J.B. Guerard, Jr, H. M. Markowitz, P. Todd, and G-L. Xu. 1993. "A Comparison of 465 Some Aspects of the U.S. and Japanese Equity Markets." Japan \& the World Economy 5, 3-26. 466
Brown, L.D. 1999 and 2008. Annotated I/B/E/S Bibliography.
Bruce, B. and C.B. Epstein. 1995. The Handbook of Corporate Earnings Analysis. Chicago: 468 Probus. 469
Brush, J. S. and K.E. Boles. 1983. "The Predictive Power in Relative Strength and CAPM". 470 Journal of Portfolio Management, 20-23.

471
Brush, J.S. 2001.'Price Momentum: A Twenty-Year Research Effort". Columbine Newsletter 472 Special Issue.
Brush, J. S. 2007. "A Flexible Theory of Price Momentum". Journal of Investing 16. 474
Bunn, D. W. 1989. "Forecasting with more than One Model". Journal of Forecasting 8, 161-166. 475
Bunn, D.W. 1975. "A Bayesian Approach to the Linear Combination of Forecasts", Operational 476 Research Quarterly 26, 325-329.

477
Chan, L.K.C., Y. Hamao, and J. Lakonishok. 1991. "Fundamentals and Stock Returns in Japan". 478 Journal of Finance 46, 1739-1764. 479
Chan, L.K.C., J. Lakonishok, and Y. Hamao 1993. "Can Fundamentals Predict Japanese Stock 480 Returns" Financial Analysts Journal. 481
Chan, L.K.C., N. Jegadeesh and J. Lakonishok. 1996. "Momentum Strategies." Journal of Finance 482 51, 1681-1713. 483
Chen, N-F., R. Roll, and S. Ross. 1986. "Economic Forces and the Stock Market." Journal of 484 Business 59, 383-403.

485
Clemen, R.T. 1989. "Combining Forecasts: A Review and Annotated Bibliography". International 486 Journal of Forecasting 5, 559-583. 487
Clemen, R. T. and J.B. Guerard, Jr. 1989. "Econometric GNP Forecasts: Incremental Information 488 Relative to Naïve Extraploation." International Journal of Forecasting 5, 417-426. 489
Clemen, R.T., 1986. "Linear Constraints and the Efficiency of Combined Forecasts". Journal of 490 Forecasting 5, 31-38. 491
Clemen, R.T. and Winkler, R.L. 1986, "Combining Economic Forecasts". Journal of Business and 492 Economic Statistics 4, 39-46. 493
Doornik, J. A. and D. F. Hendry. 2009. Empirical Econometric Modelling. Timberlake 494 Consultants, Ltd.

495
Doornik, J. A. and D. F. Hendry. 2009. Modelling Dynamic Systems. Timberlake Consultants, 496 Ltd.

497
Elton, E. J., M.J. Gruber, and M. Gultekin. 1981. "Expectations and Share Prices." Management 498 Science 27, 975-987.
Figlewski, S. and Urich, T. 1983. "Optimal Aggregation of Money Supply Forecasts: Accuracy, 500 Profitability and Market Efficiency". Journal of Finance 28, 695-710. 501
Granger, C.W.J. 1989. "Invited Review: Combining Forecasts-Twenty Years Later". Journal of 502 Forecasting 8, 167-173. 503
Granger, C.W.J. and Newbold, P. 1977. Forecasting Economic Time Series, New York: Academic 504 Press. 505
Granger, C.W.J. and Ramanathan, R., 1984. "Improved Methods of Combining Forecasts", 506 Journal of Forecasting, 3 (1984), 197-204.
Guerard, J.B., Jr., M.N. Gultekin, and G. Xu. 2012. "Investing with Momentum: The Past, Present, 508 and Future", Journal of Investing 21, 68-80. 509
Guerard, J.B. , Jr. 2012. "Global Earnings Forecast Efficiency" in J. Kensinger, Ed., Research in 510 Finance 28, 19-47.

Guerard, J.B., Jr., S. C. Chettiappan, and G-L, Xu. 2010. "Stock-Selection Modeling and Data Mining Corrections: Long-Only versus 130/30 Models". The Handbook of Portfolio Construction: Contemporary Applications of Markowitz Techniques. New York: Springer.
Guerard, J.B., Jr. and M. Takano. 1991. "The Development of Mean-Variance Portfolios in Japan and the U.S.". Journal of Investing 1.
Guerard, J.B., Jr. 1990. "Optimal Portfolio Analysis using Composite Model-Tilting". Drexel Burnham, Lambert. Unpublished working paper.
Guerard, J.B., Jr. and R.T. Clemen. 1989. "Collinearity and the Use of Latent Root Regression for Combining GNP Forecasts". Journal of Forecasting 8, 231-238.
Gunst, R.F., Webster, J.T. and Mason, R.L. 1976. "A Comparison of Least Squares and Latent Root Regression Estimators". Technometrics, 18, 75-83.
Gupta, S. and Wilton, P.C., "Combination of Forecasts: An Extension", Management Science, 33 (1987), 356-72.

Haugen, R. and N. Baker. 2010. "Case Closed". The Handbook of Portfolio Construction: Contemporary Applications of Markowitz Techniques. New York: Springer.
Hocking, R.R. 1976. "The Analysis and Selection of Variables in Linear Regression". Biometrics 32, 1-49.
Kang, H. 1986. "Unstable Weights in the Combination of forecasts". Management Science 32, 683-95.
Lindley, D.V. and Smith, A.F.M. 1972. "Bayes estimates for the linear model". Journal of the Royal Statistical Society, Series B, 34, 1-41.
Makridakis, S. and Winkler, R.L. 1983. "Averages of Forecasts: Some Empirical Results". Management Science 29, 987-996.
Markowitz, H.M. 1952. "Portfolio Selection." Journal of Finance 7, 77-91.
Markowitz, H.M. 1959. Portfolio Selection: Efficient Diversification of Investment. Cowles Foundation Monograph No.16. New York, John Wiley \& Sons.
Markowitz, H.M. and G.L. Xu. 1994. "Data Mining Corrections". Journal of Portfolio Management. Fall.
Montgomery, D.C. and Peck, E.A. 1982. Introduction to Linear Regression Analysis, New York: Wiley.
Nerlove, M. 1968. "Factors Affecting Differences Among Rates of Return on Investments in Individual Common Stocks". Review of Economics and Statistics 50, 312-331.
Newbold, P. and Granger, C.W.J. 1974. "Experience with Forecasting Univarate Time Series and the Combination of Forecasts". Journal of the Royal Statistical Society, Series A., 137, 131-164.
Sharma, S. and James, W.L. 1981. "Latent Root Regression: An Alternative Procedure for Estimating Parameters in the Presence of Multicollinearity". Journal of Market Research 18, 154-161.
Subramanian, S. 2011. "US Quantitative Primer", Bank of America Merrill Lynch, May.
Webster, J.T., Gunst, R.F. and Mason, R.L. 1974. "Latent Root Regression Analysis". Technometrics 16, 513-22.
Winkler, R.L., 1981. "Combining Probability Distributions from Dependent Information Sources". Management Science 27, 479-88.
Winkler, R.L. and Makridakis, S. 1983. "The Combination of Forecasts". Journal of the Royal Statistical Society, Series A., 146, 150-157.

Author Queries

Chapter No.: 4 192189_1_En

AU10	Hawkins et al. (1984); Arnott (1985); Wheeler (1994) are cited in the text but bibliographic informations are missing. Kindly provide the biblio- graphic information. Otherwise, please delete it from the text.	
AU11	Please check whether the edit made to the sentence "Wheeler (1994) developed and tested..." is ok.	
AU12	Guerard et al. (1997) is cited in the text but its bibliographic information is missing. Kindly provide its biblio- graphic information. Otherwise, please delete it from the text.	
AU13	Belsley et al. (1980) is cited in the text but its bibliographic information is missing. Kindly provide its biblio- graphic information. Otherwise, please delete it from the text.	
AU19	Levy (1967) is cited in the text but its bibliographic information is missing. Kindly provide its bibliographic in- formation. Otherwise, please delete it from the text.	
AU16	Fama and French (1992, 1995) are AU17 AUted in the text but bibliographic informations are missing. Kindly provide the bibliographic informa- tion. Otherwise, please delete it from the text.	
Missing citation for Fig. 4.3 was inserted here. Please check if appro- priate. Otherwise, please provide citation for Fig. 4.3. Note that the order of main citations of figure in the text must be sequential.		
Brush et al. (2004) is cited in the text but its bibliographic information is missing. Kindly provide its biblio- ter" in the sentence "The average...".		
graphic information. Otherwise, please delete it from the text.		
Please check whether it should be		
Guerard and Takano (1991) is cited in the text but its bibliographic information is missing. Kindly pro- vide its bibliographic information. Otherwise, please delete it from the		

AU20	In footnote 7, please revise the sentence "Haugen and Baker found the..." for clarity of thought.	
AU21	Levy (1999) is cited in the text but its bibliographic information is missing. Kindly provide its bibliographic in- formation. Otherwise, please delete it from the text.	

Chapter 5
 Transfer Function Modeling and Granger Causality Testing

In this chapter we fit univariate and bivariate time series models in the tradition of 4 Box and Jenkins (1976) and Granger and Newbold (1977) and apply traditional 5 Granger causality testing following the Ashley et al. (1980) methodology. Second, 6 we estimate Vector Autoregressive Models (VAR) and Chen and Lee (1990) Vector 7 ARMA (VARMA) causality test. We test two series for causality: (1) stock prices 8 and mergers and (2) the money supply and stock prices.

Testing for Causality: The Ashley et al. (1980) Test

There is a large and growing literature on causality testing in economics. Clive 11 Granger, one of the great minds in time series, reminds us that The phrase " X causes 12 Y " must be handled with considerable delicacy, as the concept of causation is a very 13 subtle and difficult one (Ashley et al. (1980)). We will refer to Ashley et al. (1980) 14 as AGS (1980). Granger held that a universally acceptable definition of causation 15 may well not be possible, but a reasonable definition might be the following: Let $\Omega_{n} 16$ represent all the information available in the universe at time n. Suppose that at time 17 n optimum forecasts are made of X_{n+1} using all of the information in Ω_{n} and also 18 using all of this information apart from the past and present values $Y_{n-j}, j \geq 0$, of 19 the series Y_{t}. If the first forecast, using all the information, is superior to the second, 20 then the series Y_{t} has some special information about X_{t}, not available elsewhere, 21 and Y_{t} is said to cause X_{t}. Before applying this definition, one must establish the 22 criteria to decide if one forecast is superior to another. The usual procedure is to 23 compare the relative mean-square errors of post-sample forecasts, as we discussed 24 in Chap. 1.

To make the suggested definition suitable for practical use a number of 26 simplifications have to be made. Linear forecasts only will be considered, together 27 with the usual least-squares loss function, and the information set Ω_{n} has to be 28
replaced by the past and present values of some set of time series, $R_{n}:\left\{X_{n-j}, Y_{n-j}\right.$, $\left.Z_{n-j}, \ldots, j \geq 0\right\}$. Any causation now found will only be relative to R_{n}; spurious results can occur if some vital series is not in this set.

The simplest case is when R_{n} consists of just values from the series X_{t} and Y_{t}, where now the definition reduces to the following: let $\operatorname{MSE}(X)$ be the population mean-square of the one-step forecast error of X_{m+1} using the optimum linear forecast based on $X_{n-j}, j \geq 0$, and let $\operatorname{MSE}(X, Y)$ be the population mean-square of the one-step forecast error of X_{n+1} using the optimum linear forecast based on $X_{n-j}, Y_{n-j} j \geq 0$. Then Y causes X if $\operatorname{MSE}(X, Y)<\operatorname{MSE}(X)$. The testing involving the definition of causation (stated in terms of variances rather than mean-square errors) was introduced into the economic literature by Granger (1969) and it has been applied by Sims (1972) and Ashley et al. (1980), which we will refer to as AGS (1980).

AGS (1980) proposed several step approach to the analysis of causality between a pair of time series X_{t} and Y_{t} :
(i) Each series is prewhitened by building single-series ARIMA models using the Box-Jenkins procedure.
(ii) Form the cross-correlogram between these two residual series,

$$
\rho_{k}=\operatorname{corr}\left(\operatorname{res} x_{t}, \text { res } y_{t-k}\right) .
$$

(iii) For positive and negative values of k : If any ρ_{k} for $k>0$ are significantly different from zero, there is an indication that Y_{t} may be causing X_{t}, since the correlogram indicates that past Y_{t} may be useful in forecasting X_{t}. Similarly, if any ρ_{k} is significantly nonzero for $k<0, X_{t}$ appears to be causing Y_{t}. If both occur, two-way causality, or feedback, between the series is indicated. AGS (1980) note that the sampling distribution of the ρ_{k} depends on the exact relationship between the series. On the null hypothesis of no relationship, it is well known that the ρ_{k} are asymptotically distributed as independent normal with means zero and variances $1 / n$, where n is the number of observations employed, but the experience shows that the test suggested by this result must be used with extreme caution in finite samples. ${ }^{1}$ In practice, we also use a priori judgement about the forms of plausible relations between economic time series. Thus for example, a value of ρ_{1} well inside the interval $[-2 / \sqrt{n},+2 / \sqrt{n}]$ might be tentatively treated as significant, while a substantially larger value of ρ_{7} might be ignored if $\rho_{5}, \rho_{6}, \rho_{8}$, and ρ_{9} are all negligible.

This step is analogous to the univariate Box-Jenkins identification step, where a tentative specification is obtained by judgmental analysis of a correlogram. The key word is "tentative"; the indicated direction of causation is only tentative at this stage and may be modified or rejected on the basis of subsequent modeling and forecasting results.

[^19](iv) For every indicated causation, a bivariate model relating the residuals is 67 identified, estimated, and diagnostically checked. If only one-way causation 68 is present, the appropriate model is unidirectional and can be identified directly 69 from the shape of the cross-correlogram, see Granger and Newbold (1977). 70
(v) From the fitted model for residuals, after dropping insignificant terms, the 71 corresponding model for the original series is derived, by combining the 72 univariate models with the bivariate model for the residuals. It is then checked 73 for common factors, estimated, and diagnostic checks applied. ${ }^{2}$
(vi) Finally, the bivariate model for the original series is used to generate a set of 75 one-step forecasts for a post-sample period. The corresponding errors are then 76 compared to the post-sample one-step forecast errors produced by the univari- 77 ate model developed in step (i) to see if the bivariate model actually does 78 forecast better. ${ }^{3}$ The use of sequential one-step forecasts follows directly from 79 the definition above and avoids the problem of error buildup that would 80 otherwise occur as the forecast horizon is lengthened.

Because of specification and sampling error (and perhaps some structural 82 change) the two forecast error series thus produced are likely to be cross-correlated 83 and autocorrelated and to have nonzero means. In light of these problems, no direct 84 test for the significance of improvements in mean-squared forecasting error appears 85 to be available. Consequently, we have developed the following indirect procedure. 86

For some out-of-sample observation, t, let $e_{1 r}$ and $e_{2 r}$ be the forecast errors made 87 by the univariate and bivariate models, respectively, of some time series. Elemen- 88 tary algebra then yields the following relation among sample statistics for the entire 89 out-of-sample period:

$$
\begin{equation*}
\operatorname{MSE}\left(e_{1}\right)-\operatorname{MSE}\left(e_{2}\right)=\left[s^{2}\left(e_{1}\right)-s^{2}\left(e_{2}\right)\right]+\left[m\left(e_{1}\right)^{2}-m\left(e_{1}\right)^{2}\right], \tag{5.1}
\end{equation*}
$$

where MSE denotes sample mean-squared error, s^{2} denotes sample variance, and $m 91$ denotes sample mean. Letting

$$
\begin{equation*}
\Delta_{t}=e_{1 t}-e_{2 t} \quad \text { and } \quad \sum_{2}=e_{1 t}+e_{2 t} \tag{5.2}
\end{equation*}
$$

[^20]equation (5.1) can be rewritten as follows, even if $e_{1 t}$ and $e_{2 t}$ are correlated:
\[

$$
\begin{equation*}
\operatorname{MSE}\left(e_{1}\right)-\operatorname{MSE}\left(e_{2}\right)=\left[\widehat{\operatorname{cov}}\left(\Delta, \sum\right)\right]+\left[m\left(e_{1}\right)^{2}-m\left(\mathrm{e}_{2}\right)^{2}\right], \tag{5.3}
\end{equation*}
$$

\]

where $\widehat{\operatorname{cov}}$ denotes the sample covariance over the out-of-sample period.
Let us assume that both error means are positive; the modifications necessary in the other cases should become clear. Consider the analogue of (5.3) relating population parameters instead of sample statistics, and let cov denote the population covariance and μ denote the population mean. From (5.3), it is then clear that we can conclude that the bivariate model outperforms the univariate model if we can reject the joint null hypothesis $\operatorname{cov}(\Delta, \Sigma)=0$ and $\mu(\Delta)=0$ in favor of the alternative hypothesis that both quantities are nonnegative and at least one is positive.

Now consider the regression equation

$$
\begin{equation*}
\Delta_{t}=\beta_{1}+\beta_{2}\left[\sum_{t}-m\left(\sum_{t}\right)\right]+\mu_{t} \tag{5.4}
\end{equation*}
$$

where μ_{t} is an error term with mean zero that can be treated as independent of \sum_{t}. From the algebra of regression, the test outlined in the preceding paragraph is equivalent to testing the null hypothesis $\beta_{1}=\beta_{2}=0$ against the alternative that both are nonnegative and at least one is positive. If either of the two least squares estimates, $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$, is significantly negative, the bivariate model clearly cannot be judged a significant improvement. If one estimate is negative but not significant, a one-tailed t test on the other estimated coefficient can be used. If both estimates are positive, an F test of the null hypothesis that both population values are zero can be employed. But this test is, in essence, four-tailed; it does not take into account the signs of the estimated coefficients. If the estimates were independent, it is clear that the probability of obtaining an F-statistic greater than or equal to F_{0}, say, and having both estimates positive is equal to one-fourth the significance level associated with F_{0}. Consideration of the possible shapes of iso-probability curves for $\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)$ under the null hypothesis that both population values are zero establishes that the true significance level is never more than half the probability obtained from tables of the F distribution. If both estimates are positive, then one can perform an F test and report a significance level equal to half that obtained from the tables.

The approach just described differs from others that have been employed to analyze causality in its stress on models relating the original variables and on postsample forecasting performance. We now discuss these two differences.

Models directly relating the original variables provide a sounder, as well as a 125 more natural basis for conclusions about causality. As has been argued in detail by 126 Granger and Newbold (1977), however, prewhitening and analysis of the cross- 127 correlogram of the prewhitened series are useful steps in the identification of 128 models relating the original series, since the cross-correlogram of the latter is likely 129 to be impossible to interpret sensibly. Because the correlations between the 130 prewhitened series (the ρ_{k}) have unknown sampling distributions, this analysis 131 involves subjective judgements, as does the identification step in univariate 132 Box-Jenkins analysis. AGS (1980) state that in neither case is an obviously better 133 approach available, and in both cases the tentative conclusions reached are 134 subjected to further tests.
135

It is somewhat less clear how out-of-sample data are optimally employed in an 136 analysis of causality. This question is closely related to fundamental problems of 137 model evaluation and validation and is complicated by sampling error and possible 138 specification error and time-varying coefficients. The riskiness of basing 139 conclusions about causality entirely on within-sample performance is reasonably 140 clear. Since the basic definition of causality is a statement about forecasting ability, 141 it follows that tests focusing directly on forecasting are most clearly appropriate. 142 Indeed, it can be argued that goodness-of-fit tests (as opposed to tests of forecasting 143 ability) are contrary in spirit to the basic definition. ${ }^{4}$ Moreover, within-sample 144 forecast errors have doubtful statistical properties in the present context when the 145 Box-Jenkins methodology is employed. While the power of that methodology has 146 been demonstrated in numerous applications and rationalizes our use of it here, it 147 must be noted that the identification (model specification) procedures in steps 148 (i)-(iv) above involve consideration and evaluation of a wide variety of model 149 formulation. A good deal of sample information is thus employed in specification 150 choice, and there is a sense in which most of the sample's real degrees of freedom 151 are used up in this process. It thus seems both safer and more natural to place 152 considerable weight on out-of-sample forecasting performance. 153

The approach outlined above uses the post-sample data only in the final step, as a 154 test track over which the univariate and bivariate models are run in order to 155 compare their forecasting abilities. This approach is of course vulnerable to unde- 156 tected specification error or structural change. Partly as a consequence of this, the 157 likely characteristics of post-sample forecast errors render testing for performance 158 improvement somewhat delicate, as we noted above. Finally, the appropriate 159 division of the total data set into sample and post-sample periods in the AGS 160

[^21]
Modeling and an Application of the Ashley et al. (1980) Test

Quarterly Mergers, 1992-2011: Automatic Time Series
(1980) approach is unclear, and this is a nontrivial problem. We do not want to seem overly dogmatic on this issue. Our basic point is simply that model specification (perhaps especially within the Box-Jenkins framework) may well be infected by sampling error and polluted by data mining, so that it is unwise to perform tests for causality on the same data set used to select the models to be tested.

AGS applied their methodology to aggregate advertising and consumption during the 1956-1975 period. The bivariate aggregate consumption model, using aggregate advertising as its input, reduced the out-of-sample forecasting error by only 5.1 \% relative to the univariate aggregate consumption model, indicating that aggregate advertising does not cause aggregate consumption. The bivariate aggregate advertising model, using aggregate consumption as its input, reduced the out-of-sample forecasting error by 26% relative to the univariate aggregate advertising model, indicating that aggregate consumption causes aggregate advertising.

Let us explore further the AGS (1980) approach using a case study of aggregate mergers using Mergerstat quarterly data from 1992 to 2011. There is a wellestablished history of mergers and stock prices. ${ }^{5}$ Guerard (1985) used the AGS (1980) bivariate transfer function causality testing methodology and reported that stock prices led mergers over the Nelson quarterly data from 1895 to 1954. Guerard reported that the bivariate merger model, with stock prices as its input, reduced the out-of-sample forecasting errors by 35.7 \% less than the univariate time series merger model. Thus, quarterly stock prices led mergers over the 1895-1954 period. We use the AGS (1980) approach to model mergers as a function of leading economic indicators (LEI) and stock prices (using the S\&P 500). Most economic

[^22]historians recite the major merger movements and their "waves" since $1895 .{ }^{6}$ 187 AU2
A time series of the US quarterly data is obtained from the FactSet Mergerstat 188 database for 1992-2011Q2. The data is read into Oxmetrics. We run an analysis of 189 the quarterly data in which the change in the logarithmic transformation (dog) of 190 mergers is a function of the dlog components of the LEI published by The 191
${ }^{6}$ The US merger history was characterized by George Stigler (1950) to have occurred in three waves. The first major merger movement began in 1879, with the creation of the Standard Oil Trust, and ended with the depression of 1904. During the merger movement, giant corporations were formed by the combination of numerous smaller firms. The smaller companies represented nearly all the manufacturing or refining capacity of their industries. The forty largest firms in the oil-refining industry, comprising over ninety percent of the country's refining capacity and oil pipelines for its transportation, combined to form Standard Oil. In the two decades following the rise of Standard Oil, similar horizontal mergers created single dominant firms in several industries. These dominant firms included the Cottonseed Oil Trust (1884), the Linseed Oil Trust (1885), the National Lead Trust (1887), the Distillers and Cattle Feeders (1887), and the Sugar Refineries Company (1887). The trust form of organization was outlawed by court decisions. But merger activities continued to create "near" monopolies as the single corporation or holding company organization became dominant. The Diamond Match Company (1889), the American Tobacco Company (1890), the United States Rubber Company (1892), the General Electric Company (1892), and the United States Leather Company (1893) were created by the development of the modern corporation or holding company.

The height of the merger movement was reached in 1901 when 785 plants combined to form America's first billion-dollar firm, the United States Steel Corporation. The series of mergers creating the US Steel allowed it to control 65% of the domestic blast furnace and finished steel output. This growth in concentration was typical of the first merger movement. The early mergers saw 78 of 92 large consolidations gain control of 50% of their total industry output, and 26 secure 80% or more.

The first major merger movement occurred during a period of rapid economic growth. The economic rationale for the large merger movement was the development of the modern corporation, with its limited liability, and the modern capital markets, which facilitated the consolidations through the absorption of the large security issues necessary to purchase firms. Nelson found that the mergers were highly correlated to the period's stock prices and industry production. However, mergers were more sensitive to stock prices. The expansion of security issues allowed financiers the financial power necessary to induce independent firms to enter large consolidations. The rationale for the first merger movement was not one of trying to preserve profits despite slackening demand and greater competitive pressures. Nor was the merger movement the result of the development of the national railroad system, which reduced geographic isolation and transportation costs. The first merger movement ended in 1904 with a depression, the onset of which coincided the Northern Securities case. Here it was held, for the first time, that antitrust laws could be used to attack mergers leading to market dominance.

A second major merger movement stirred the country from 1916 to the depression of 1929. This merger movement was only briefly interrupted by the First World War and the recession of 1921 and 1922. The approximately 12,000 mergers of the period coincided with the stock market boom of the 1920s. Although mergers greatly affected the electric and gas utility industry, market structure was not as severely concentrated by the second movement as it was by the first merger movement. Stigler (1950) concluded that mergers during this period created oligopolies, such as Bethlehem Steel and Continental Can. Mergers, primarily vertical and conglomerate in nature as opposed to the essentially horizontal mergers of the first movement, did affect competition adversely. The conglomerate product-line extensions of the 1920 s were enhanced by the highcross elasticities of demand for the merging companies' products Lintner (1971). Antitrust laws,

Conference Board. An AR(1) process adequately models the quarterly mergers series, using 32 observations for the estimation period, see Table 5.1, as the partial autocorrelation (PAC) function dies after lag 1. A time series regression of mergers as a function of the components of the LEI reveals that only stock prices and the money supply are statistically significant at the 15% level; moreover, the money supply variable has an incorrectly negative coefficient, see (5.5). An application of the Automatic Modeling Selection procedure, see (5.6), leads to only the negative money supply. Guerard reported a four-quarter lag in the relationship between mergers and stock prices from 1895 to 1954. We expect lags in the LEI to lead mergers. We use one- and two-quarter lags in the LEI data (see Table 5.2 for the cross-correlation estimate) and report in (5.8) that the one-period lagged stock price series is statistically correlated with mergers. In (5.8), (5.9), and (5.10), we report that the current and one-period lagged stock price data leads mergers. The F-statistic of (5.10) dominates the F-statistics of (5.8) and (5.9) in which we run regressions of mergers as a function of the LEI data. There is a statistically significant two-quarter lag with LEI and mergers; however, the effect is less statistically pronounced than the stock price data. An application of the Doornik and Hendry (2009a, b) Automatic Modeling Selection procedure, see (5.7), leads to a one-period lag in stock prices and four outliers. A further application of the Doornik and Hendry (2009a, b) Automatic Modeling Selection cointegration procedure, see SYS (10), leads to a one-period lag in stock prices and four outliers.
though not seriously enforced, prevented mergers from creating a single dominant firm. Merger activity diminished with the depression of 1929 and continued to decline until the 1940s.

The third merger movement began in 1940; mergers reached a significant proportion of firms in 1946 and 1947. The merger action from 1940 to 1947 , although involving 7.5% of all manufacturing and mining corporations and controlling 5% of the total assets of the firms in those industries, was quite small compared to the merger activities of the 1920s. The mergers of the 1940s included only one merger between companies with assets exceeding 50 million dollars and none between firms with assets surpassing 100 million dollars. The corresponding figures for the mergers of the 1920s were 14 and eight, respectively. Eleven firms acquired larger firms during the mergers of the 1920s than the largest firm acquired during the 1940s merger. The mergers of the 1940s affected competition far less than did the two previous merger movements, with the exception of the food and textile industries. The acquisitions by the large firms during the 1940s rarely amounted to more than seven percent of the acquiring firms' 1939 assets or to as much as a quarter of \sim the acquiring firm's growth rate from 1940 to 1947 . Approximately 5 billion dollars of assets were held by acquired or merged firms over the 1940-1947 period. Smaller firms were generally acquired by larger firms. Companies with assets exceeding 100 million dollars acquired, on average, firms with assets of less than two million dollars. The larger firms tended to engage in a greater number of acquisitions than smaller firms. The acquisitions by the larger, acquiring firms tended to involve more firms than did those acquired by smaller, acquiring firms. Mergers added relatively less to the existing size of the larger acquiring firms in the early period of the third merger movement. The relatively smaller asset growth of the larger acquiring firms is in accordance with the third merger movement's generally small effects on competition and concentration. One factor contributing to the maintenance of competition was the initiative for the mergers coming from the owners of the smaller firms. Financiers and investment bankers did not play a prominent part in the early third merger movement, but certainly have in the 1992-2011 period.

Table 5.1 Quarterly mergers, 1992-2011, autocorrelation function estimates

Sample 132							
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob		
***\| .		*** \\| I	$1-0.430$	-0.430	6.4786	0.011	
. ${ }^{* *}$. \|	I*. I	20.289	0.129	9.5172	0.009		
.**\| . 1	. * . \|	3-0.297	-0.167	12.836	0.005		
. ${ }^{* * *}$. \|	. ${ }^{*}$. I	40.323	0.163	16.883	0.002		
*** \|		* . 1	$5-0.335$	-0.147	21.400	0.001	
. ${ }^{* *}$. I	1. 1	60.220	-0.027	23.434	0.001		
.**\| 1	. 1	$7-0.193$	-0.013	25.051	0.001		
. 1. 1	.**\| 1	8-0.047	-0.309	25.153	0.001		
. * . 1	* ${ }^{1}$ \|	9-0.111	-0.124	25.734	0.002		
. 1. 1	.**\| 1	10-0.028	-0.228	25.772	0.004		
. ${ }^{*}$. 1	. 1.1	110.067	0.016	26.002	0.006		
. * . 1	.**\| 1	12-0.185	-0.224	27.874	0.006		
. ${ }^{*}$. 1	* ${ }^{1}$ I	130.121	-0.146	28.709	0.007		
. 1. 1	. ${ }^{*}$. I	140.022	0.127	28.737	0.011		
. ${ }^{*}$. 1	. 1. 1	150.102	-0.057	29.399	0.014		
. 1. 1	. ${ }^{*}$. 1	16-0.008	0.112	29.403	0.021		

Table 5.2 Quarterly mergers, 1992-2011, cross-correlation function estimates
Sample 132
Included observations: 32
Correlations are asymptotically consistent approximations

DDMERGERS,DLEI(-i)	DDMERGERS,DLEI(+i)	i	lag	lead		
* . 1	* . 1		-0.0949	-0.0949		
. * \|	1*. \|		-0.1243	0.1088		
I*. \|	\|***.		2	0.1017	0.2784	
.***\|		**\| .			-0.3371	-0.1761
*	. ${ }^{*}$. \|		-0.0897	0.1190		
1	\|**.			-0.0390	0.1976	
. 1^{*}. 1	।* I	6	0.0523	0.1242		
**\| 1	I . I		-0.1949	0.0298		
. $1^{* *}$. 1	. ${ }^{1}$. 1	8	0.2065	-0.1144		

If one applies the Ashley et al. (1980) transfer function causality test to the 213 mergers and stock price series, one finds a t-value of 0.57 on the stock price series. 214 That is, a transfer function merger model using one-period lagged stock prices as an 215 input reduces the root mean square root relative to a random-walk with drift model, 216 but the forecast error reduction is not statistically significant, a result reported by 217

218 Guerard and McDonald (1995). Ashley $(1998,2003)$ and Thomakos and Guerard (2004) have reexamined the issue of post-sample periods for model validation and relative forecasting efficiency. The purpose of this case study is to present an updated and new analysis of the merger movements in the United States and the relationship between mergers, stock prices, and LEI. We find additional statistical correlation and regression analysis to support the historical statistical evidence that stock prices lead mergers. Stock prices are a component of the LEI; however, stock prices more directly lead mergers than the LEI. Stock prices do not lead mergers in an Ashley, Granger, and Schmalensee causality test for the 1992-2011 period. ${ }^{7}$

Ox Professional version 6.00

The use of the Autometrics algorithm in Oxmetrics for automatic time series regressions is reported in Equation 6 .
---------- Autometrics: dimensions of initial GUM -----------
no. of observations 76 no. of parameters 11
no. free regressors (k1) 11 no. free components (k2) 0
no. of equations 1 no. diagnostic tests 5

| | Summary of Autometrics search | | |
| :--- | ---: | :--- | ---: | ---: |
| initial search space | $2^{\wedge} 11$ | final search space | $2 \wedge 3$ |
| no. estimated models | 93 | no. terminal models | 2 |
| test form | LR-F | target size | Default:0.05 |
| outlier detection | no | presearch reduction | lags |
| backtesting | GUMO | tie-breaker | SC |
| diagnostics p-value | 0.01 | search effort | standard |
| time | 0.12 | Autometrics version | $1.5 e$ |

[^23]

The use of the lagged LEI components in the merger analysis is shown in GUM (3), and lagged stock prices are statistically significant.

GUM(3) Modelling dDMergers by OLS

	Coefficient S	Std.Error	t-value	t-prob	Part. $\mathrm{R}^{\wedge} 2$
Constant	0.0293535	0.02199	1.33	0.1886	0.0373
dHrWeek	0.718022	1.935	0.371	0.7123	0.0030
dHrWeek_1	-4.76930	2.260	-2.11	0.0403	0.0883
dHrWeek_2	1.46406	1.945	0.753	0.4554	0.0122
dWkInCL	-0.268383	0.2958	-0.907	0.3690	0.0176
dWkInCL_1	0.154163	0.2948	0.523	0.6036	0.0059
dWkInCL_2	-0.0874009	0.2729	-0.320	0.7502	0.0022
dMfgOrders	-0.888739	0.7525	-1.18	0.2437	0.0294
dMfgorders_1	0.595087	0.7798	0.763	0.4493	0.0125
dMfgOrders_2	0.397199	0.7510	0.529	0.5994	0.0060
dSuppDev	0.149083	0.2632	0.566	0.5739	0.0069
dSuppDev_1	-0.291959	0.2718	-1.07	0.2883	0.0245
dSuppDev_2	0.289764	0.2669	1.09	0.2832	0.0250
dMfgNonD	0.0375464	0.2700	0.139	0.8900	0.0004
dMfgNonD_1	-0.186103	0.2740	-0.679	0.5004	0.0099
dMfgNonD_2	-0.206999	0.2516	-0.823	0.4149	0.0145
BldPerm	-0.162543	0.2562	-0.634	0.5289	0.0087
BldPerm_1	0.231607	0.2557	0.906	0.3698	0.0175
BldPerm_2	0.166691	0.2366	0.705	0.4846	0.0107
dSP500	0.181444	0.1974	0.919	0.3627	0.0180
dSP500_1	0.374018	0.2129	1.76	0.0856	0.0629
dSP500_2	0.261796	0.2092	1.25	0.2171	0.0329
dM2	-2.36158	1.649	-1.43	0.1588	0.0427
dM2	-1.56727	1.631	-0.961	0.3417	0.0197
dM2	1.89004	1.452	1.30	0.1994	0.0355
dCō̄Exp	0.0499092	0.1528	0.327	0.7454	0.0023
dConExp_1	0.0725079	0.1710	0.424	0.6735	0.0039
dConExp_2	-0.00138546	0.1626	-0.00852	0.9932	0.0000
sigma	0.0936325	5 RSS		0.403284062	
R^2	0.531762	7 log-likelihood		1.935 [0.024]*	
Adj. $\mathrm{R}^{\wedge} 2$	0.256927			87.8492	
no. of obs	ions 74	4 no. of parameters		280.10862	
mean (dDMer	0.0209568	8 se (dDMe	rgers)		

The use of the lagged LEI components in the merger analysis is shown in equation $7, \mathrm{EQ}(7)$, and current and lagged stock prices are statistically significant.

GUM (6) Modelling dDMergers by OLS

AR 1-2 test:	$\mathrm{F}(2,67)$	$=2.5108$	$[0.0888]$	
ARCH 1-1 test:	$\mathrm{F}(1,72)$	$=0.072879$	$[0.7880]$	
Normality test:	Chi^2(2)	$=0.21892$	$[0.8963]$	
Hetero test:	$\mathrm{F}(2,67)$	$=0.59968$	$[0.5519]$	
Hetero-X test:	$\mathrm{F}(2,67)$	$=0.59968$	$[0.5519]$	
RESET23 test:	$\mathrm{F}(2,67)$	$=$	2.9589	$[0.0587]$

EQ (9) Modelling dDMergers by OLS

	Coefficient	Std.Error	t-value	t-prob	Part.R^2
dDMerge	-0.307811	0.1105	-2.78	0.0069	0.1010
Constant	-0.0183499	0.01466	-1.25	0.2150	0.0222
dLEI	1.41159	1.122	1.26	0.2128	0.0224
dLEI_1	1.64150	1.206	1.36	0.1779	0.0261
dLEI_2	3.29982	1.159	2.85	0.0058	0.1052
sigma	0.0963794	RSS	0.640940151		
$\mathrm{R}^{\wedge} 2$	0.255829	$F(4,69)=$	5.93 [0.000]**		
Adj. $\mathrm{R}^{\wedge} 2$	0.212689	log-likeli	ood	70.7073	
no. of observations	s 74	no. of par	meters		5
mean(dDMergers)	0.0209568	se (dDMerge		0.10	862

	EQ(10) Modelling dDMergers by OLS				
	Coefficient	Std.Error	t-value	t-prob Part.R^2	
dDMergers_1	-0.266408	0.1109	-2.40	0.0189	0.0742
dLEI_2	4.16836	0.9233	4.51	0.0000	0.2206
sigma				0.691856946	
log-likelihood	0.0980261	RSS			
no. of observations	67.8789				
mean(dDMergers)	0.0209568	no. of parameters	se(dDMergers)	0.10862	

| AR 1-2 test: | $F(2,70)$ | $=2.1666[0.1222]$ |
| :--- | :--- | :--- | :--- |
| ARCH 1-1 test: | $F(1,72)$ | $=0.19580[0.6595]$ |
| Normality test: | Chi^2(2) | $=11.783[0.0028] * *$ |
| Hetero test: | $F(4,69)$ | $=0.37461[0.8260]$ |
| Hetero-X test: | $F(5,68)$ | $=0.32981[0.8933]$ |
| RESET23 test: | $F(2,70)$ | $=0.13933[0.8702]$ |

SYS (10) Estimating the system by OLS
URF equation for: dDMergers

	Coefficient	Std.Error	t-value	t-prob
dSP500_1	0.684853	0.1226	5.59	0.0000
dSP500_2	0.434119	0.1293	3.36	0.0013
dDMergers_1	-0.403148	0.09623	-4.19	0.0001
I:12	0.265718	0.07600	3.50	0.0009
I:16	0.358818	0.07591	4.73	0.0000
I:21	-0.0583222	0.07659	-0.762	0.4492
I:27	0.00245011	0.07758	0.0316	0.9749
I:41	-0.0283959	0.07627	-0.372	0.7109
I:66	0.0455124	0.07842	0.580	0.5638
Constant	U	0.00528934	0.009625	0.550
sigma $=0.0751446$	RSS $=0.3500962608$			

URF equation for: dSP500
Coefficient Std.Error t-value t-prob

dSP500_1	0.197326	0.1002	1.97	0.0535
dSP500_2	0.0479722	0.1057	0.454	0.6516
dDMergers_1	-0.0327802	0.07869	-0.417	0.6784
I $: 12$	0.0723661	0.06215	1.16	0.2487
I:16	0.0295421	0.06208	0.476	0.6358
I:21	0.179644	0.06263	2.87	0.0056
I:27	0.198216	0.06344	3.12	0.0027
I:41	-0.217843	0.06237	-3.49	0.0009
I:66	-0.261739	0.06413	-4.08	0.0001
Constant	U	0.0123240	0.007871	1.57
				0.1225

Causality Testing: An Alternative Approach by Chen and Lee

The most complicated task in transfer function modeling is the identification of the 230 transfer function form for each input series, particularly if the transfer function 231 model includes multiple-input variables. Let us use the methodology of Liu (1999) 232 and Chen and Lee (1990) to employ the linear transfer function (LTF) method. The 233 LTF identification method can be used in the same manner no matter if the transfer 234 function model has single-input or multiple-input variables. This method is more 235 practical and easier to use than the cross correlation function (CCF) method 236 discussed in Box and Jenkins (1976).

As in multiple regression models, a single-equation transfer function model 238 may contain more than one input variable. Assuming that the input and output 239 series are both stationary, the general form of a single-input transfer function 240 model is

$$
\begin{equation*}
Y_{t}=C+\frac{\omega(B)}{\delta(B)} X_{t}+N_{t}, \quad N_{t}=\frac{\theta(B)}{\phi(B)} a_{t}, \tag{5.5}
\end{equation*}
$$

where $\omega(B)=\left(\omega_{0}+\omega_{1} B+\cdots+\omega_{h-1} B^{h=1}\right) B^{b}$,

$$
\begin{aligned}
& \delta(B)=1-\delta_{1} B-\cdots-\phi_{r} B^{r} \\
& \phi(B)=1-\phi_{1} B-\cdots-\phi_{p} B^{p}
\end{aligned}
$$

and

$$
\theta(B)=1-\theta_{1} B-\cdots-\theta_{q} B^{q} .
$$

The operators $\phi(B)$ and $\theta(B)$ can be in simple or multiplicative form. In the 244 above model, N_{t} is referred to as the disturbance or noise of the model, and a_{t} is a 245 sequence of random shocks following i.i.d. In model (5.5), the order b in the $\omega(B) 246$ polynomial is referred to as the delay of the transfer function. Box and Jenkins 247 (1976) defined $\omega(B)$ as 248

$$
\begin{equation*}
\omega(B)=\left(\omega_{0}-\omega_{1} B-\cdots-\omega_{h-1} B^{h-1}\right) B^{b} \tag{5.6}
\end{equation*}
$$

By using a positive sign in front of all ω_{j} coefficients, Chen and Lee (199) state 249 that the direction of changes in Y_{t} will correspond to the direction of changes in $X_{t} 250$ consistently depending on the sign of ω_{j}.

Similar to the stationary condition for $\phi(B)$, it is important to restrict all roots of 252 the $\delta(B)$; it is polynomial to lie outside the unit circle. Under such an assumption, 253 the transfer function $\omega(B) / \delta(B)$ can always be expressed in linear form as

$$
\begin{equation*}
V(B)=v_{0}+v_{1} B+v_{2} B^{2}+\cdots \tag{5.7}
\end{equation*}
$$

The LTF $V(B)$ has a finite number of terms if $\delta(B)=1$ (since $V(B)=\omega(B)$) and an infinite number of terms if $\delta(B) \neq 1$. The values $v_{0}, v_{1}, v_{2}, \ldots$ are referred to as transfer function weights (or impulse response weights) for the input series X_{t}. Using $V(B)$, the transfer function in (5.7) can be expressed in linear form as

$$
\begin{equation*}
Y_{t}=C+V(B) X_{t}+N_{t} . \tag{5.8}
\end{equation*}
$$

Single-equation transfer function modeling also assumes a unidirectional relationship between the input and the output series, i.e., X_{t} may affect the present and future value of Y_{t}, but Y_{t} does not influence X_{t}. The same notion holds true if there are multiple-input series in the model. It is important to verify that only a unidirectional influence is present among the variables in a single-equation transfer function analysis. If a bidirectional or feedback relationship exists among the variables, inconsistent parameter estimates may occur. It is easy to extend the single-input model to multiple-input models. Assuming that we have m input variables in the system, the multiple-input transfer function model can be written as

$$
\begin{equation*}
Y_{t}=C+\frac{\omega_{1}(B)}{\delta_{1}(B)} X_{1 t}+\frac{\omega_{2}(B)}{\delta_{2}(B)} X_{2 t}=\cdots+\frac{\omega_{m}(B)}{\delta_{m}(B)} X_{m t}+\frac{\theta(B)}{\phi(B)} a_{t} \tag{5.9}
\end{equation*}
$$

where the rational transfer function $\omega_{i}(B) / \delta_{i}(B)$ for each input variable has the general form as defined in (5.9).

The identification method to be discussed in this section is applicable for both single-input and multiple-input transfer function models for notational convenience; however, the single-input model presented in (5.9) will be used here. The transfer function model identification procedure can be generally divided into three steps:

1. Estimation of the transfer function weights, v_{j} 's
2. Determination of the model for the disturbance term N_{t}
3. Determination of the form of the rational polynomial $\omega(B) / \delta(B)$ that best approximates $V(B)$

The CCF is primarily used as a tool for diagnostic checking.
The rational transfer function $\omega(B) / \delta(B)$ can be approximated by an LTF $V(B)$ with a finite number of terms, say $K+1$. Using such an approximation, model (5.10) can be expressed as

$$
\begin{equation*}
Y_{t}=C+\left(v_{0}+v_{1} B+v_{2} B^{2}+\cdots+v_{K} B^{K}\right) X_{t}+N_{t} . \tag{5.10}
\end{equation*}
$$

Using the above model, the transfer function weights $v_{0}, v_{1}, v_{2}, \ldots, v_{K}$ can be 284 easily obtained by the ordinary least squares method.

The use of the autoregressive disturbance models in the LTF method shall 286 improve the efficiency of the transfer function eight estimates, which in turn 287 shall improve the accuracy of the estimated disturbance \hat{N}_{j}. The values of $\hat{\phi}_{1}$ and 288 $\hat{\Phi}_{1}$ may also provide an indication of whether regular or seasonal differencing of the 289 input and output series is necessary. After the transfer function weights are 290 estimated, the disturbance series can be computed using these weights where 291

$$
\begin{equation*}
\hat{N}_{t}=Y_{t}-\hat{C}-\hat{V}(B) X_{t} . \tag{5.11}
\end{equation*}
$$

After the transfer function weights are estimated, the form of the rational transfer 292 function $\omega(B) / \delta(B)$ can also be determined. Recall that

$$
\begin{equation*}
V(B)=\frac{\omega(B)}{\delta(B)}=\frac{\left(\omega_{0}+\omega_{1} B+\cdots+\omega_{h-1} B^{h}\right) B^{h}}{1-\delta_{1} B-\cdots-\delta_{r} B^{r}} \tag{5.12}
\end{equation*}
$$

If $\delta(B)=1$ (i.e., $r=0$), then $V(B)=\omega(B)$ and $V(B)$ has a cutoff pattern. On the 294 other hand, if $\delta(B) \neq 1$ (i.e., $r \geq 1$), then $V(B)$ is an infinite series theoretically and 295 therefore has a die-out pattern. Since $\hat{V}(B)$ is an estimate of $V(B)$, we may conclude 296 that $\delta(B)=1$ and $\omega(B)$ comprise only the significant terms in $\hat{V}(B)$ if $\hat{V}(B)$ has a 297 cutoff pattern. On the other hand when $\hat{V}(B)$ has a die-out pattern, it implies that the 298 $\delta(B)$ polynomial is not 1 . In such a case, the corner table method proposed in Liu 299 and Hanssens (1982) can be used to determine the values b, h, and r in the rational 300 AU4 polynomial $\omega(B) / \delta(B)$.

For a set of transfer function weights v_{j} 's, the corner table method can be used to 302 identify the orders in the corresponding rational transfer function $\omega(B) / \delta(B)$. The 303 method uses a table which consists of $\Delta(f, g)$ as the entry of the f-th row and g-th 304 column, $f=0,1,2, \ldots, g=1,2,3, \ldots$, and $\Delta(f, g)$ is the determinant of a $g \times g 305$ matrix defined as

$$
D(f, g)=\left[\begin{array}{cccc}
u_{f} & u_{f-1} & \ldots & u_{f-g+1} \\
u_{f+1} & u_{f} & \ldots & u_{f-g+2} \\
\vdots & \vdots & \ldots & \vdots \\
u_{f+g-1} & u_{f+g-2} & \ldots & u_{f}
\end{array}\right]
$$

where $u_{j}=v_{j} / v_{\max }, u_{j}=0$ if $j<0$, and $v_{\max }$ is the maximum value of $\left|v_{j}\right|, j=1,2, \ldots, K .307$ It can be shown that the transfer function weights v_{j} 's have a representation 308 $\omega(B) / \delta(B)$ with order b, h, and r if the associated table has the following pattern: 309

$$
\begin{equation*}
Y_{t}=C+\frac{\omega(B)}{\delta(B)} X_{t}+\frac{\theta(B)}{\phi(B)} a_{t} \tag{5.13}
\end{equation*}
$$

the task is to estimate the vectors of parameters $\omega=\left[\omega_{0}, \omega_{1}, \ldots, \omega_{s-1}\right]^{\prime}$, and 328 $\delta=\left[\delta_{1}, \delta_{2}, \ldots, \delta_{r}\right]^{\prime}, \phi=\left[\phi_{1}, \phi_{2}, \ldots, \phi_{p}\right]^{\prime}$, and $\theta=\left[\theta_{1}, \theta_{2}, \ldots, \theta_{q}\right]^{\prime}$. If there are 329 several explanatory variables we will have sever ω and δ vectors. The exact ML 330 AU6 method can be used to estimate the parameters in the transfer function model. 331

After a transfer function model has been identified and estimated, it is necessary 332 to verify if the model adequately fits the data. In the same way that the sample ACF 333 is used in the diagnostic checking of ARIMA models, the sample CCF can be used 334 in diagnostic checking of transfer function models. The sample ACF and CCF can 335 be conveniently combined into sample cross correlation matrices (CCM), which 336 can be used to simplify the diagnostic checking procedure. The autocorrelation of a 337 time series represents the correlation between the values within a series. 338

It is useful to note that the cross correlation at $\operatorname{lag} k$ is a generalization of 339 autocorrelation at lag k since $\rho_{Y X}(k)=\rho_{Y}(k)$ cross correlation measures not only 340 the strength of an association but also its direction. To see the full picture of the 341 relationship between the series Y_{t} and X_{t}, it is important to examine the cross 342 correlations, $\rho_{Y K}(k)$, for both positive and negative lags. The sequence of cross 343 correlations $\rho_{Y K}(k), k=0, \pm 1, \pm 2, \pm 3, \ldots$ is referred to as the CCF for the 344 bivariate series Y_{t} and X_{t}.

The estimate of the cross covariance at lag $k, \gamma_{Y X}{ }^{(k)}$ in (5.28) is provided by ${ }_{346}$

$$
\begin{align*}
& C_{Y K}(k)=\frac{1}{n} \sum_{t=k+1}^{n}\left(Y_{t}-\bar{Y}\right)\left(X_{t-k}-\bar{X}\right), \quad k=0,1,2, \ldots \tag{5.14}\\
& C_{Y K}(k)=\frac{1}{n} \sum_{t=1}^{n+k}\left(Y_{t-k}-\bar{Y}\right)\left(X_{t}-\bar{X}\right), \quad k=0,-1,-2, \ldots
\end{align*}
$$

and \bar{Y} and \bar{X} are the sample means of Y_{t} and X_{t} series. Note that $C_{Y Y}(0)$ and $C_{X X}(0)$ are 347 the estimates of σ_{Y}^{2} and σ_{X}^{2}, respectively.

While it is workable to use CCF in diagnostic checking if only two series are 349 considered, it is necessary to put the relevant CCFs into a matrix form to facilitate visual 350 inspection when more than two series are involved in a study. This matrix form CCF is 351 referred to as CCM. Assuming that $Z_{t}=\left[Y_{t}, X_{t}\right]^{\prime}$, the CCM for the vector series Z_{t} are 352

$$
\begin{aligned}
& \text { lag } \\
& 1 \quad 2 \\
& \text { CCM }\left[\begin{array}{ll}
1 & \rho_{Y X}(0) \\
\rho_{X X}(0) & 1
\end{array}\right]\left[\begin{array}{ll}
\rho_{Y Y}(1) & \rho_{Y X}(1) \\
\rho_{X Y}(1) & \rho_{X X}(1)
\end{array}\right]\left[\begin{array}{ll}
\rho_{Y Y}(2) & \rho_{Y X}(3) \\
\rho_{X Y}(2) & \rho_{X X}(2)
\end{array}\right]\left[\begin{array}{ll}
\rho_{Y Y}(3) & \rho_{Y X}(3) \\
\rho_{X Y}(3) & \rho_{X X}(3)
\end{array}\right] .
\end{aligned}
$$

Thus the CCM contains the ACF for each series and both directions of CCFs.
When the vector series Z_{t} contains m time series, i.e., $Z_{t}=\left[Z_{1 t}, Z_{2 t}, \ldots, Z_{m t}\right]^{\prime}$, the 354 lag $k \mathrm{CCM}$ of the vector series Z_{t} is defined as

$$
\rho(k)=\left[\begin{array}{cccc}
\rho_{11}(k) & \rho_{12}(k) & \cdots & \rho_{1 m}(k) \tag{5.15}\\
\rho_{21}(k) & \mathrm{P}_{22}(k) & \cdots & \mathrm{P}_{2 m}(k) \\
\vdots & \vdots & \cdots & \vdots \\
\rho_{m 1}(k) & \rho_{m 2}(k) & \cdots & \rho_{m m}(k)
\end{array}\right], \quad k=0,1,2,3, \ldots,
$$

where

$$
\rho_{i j}(k)=\gamma_{i j}(k) /\left[\gamma_{i i}(0) \gamma_{j j}(0)\right]^{1 / 2}
$$

and

$$
\gamma_{i j}(k)=E\left[\left(Z_{i t}-\mu_{i}\right)\left(Z_{j}(t-k)-\mu_{j}\right)\right], \quad \mu_{i}=E\left(Z_{i t}\right)
$$

Since the cross covariance $\gamma_{i j}(k)$ can be estimated by

$$
\begin{equation*}
C_{i j}(k)=\frac{1}{n} \sum_{t=k+1}^{n}\left(Z_{i t}-\bar{Z}_{i}\right)\left(Z_{j(t-k)}-\bar{Z}_{j}\right) \tag{5.16}
\end{equation*}
$$

the estimate of the cross correlation at lag k can be written as

$$
\begin{equation*}
\hat{\rho}_{i j}(k)=C_{i j}(k) /\left[C_{i i}(0) C_{j j}(0)\right]^{1 / 2} \tag{5.17}
\end{equation*}
$$

The (i, j) th element of the displayed lag k matrix reflects the correlation between $Z_{i t}$ and $Z_{j(t-k)}$. In this manner, the elements of the CCM and the autoregression matrices have similar interpretations.

The CCM provides an effective means to display the autocorrelations and cross correlations jointly. The autocorrelations are represented along the matrix diagonal while the cross correlations are represented by the off-diagonal elements. Interpreting the sample CCM may be difficult due to the number of entries in the matrices. Following Tiao and Box (1981), an effective summary of the correlation structure is provided by using the indicator symbols $(+,-)$ to replace the numerical values of the elements in $\hat{\rho}(k)$ matrices, where a " + " sign is employed to indicate a value greater than $1.96 / \sqrt{n}$, a" - "sign for a value less than $-1.96 / \sqrt{n}$, and a "." for values in between. This device is motivated from the consideration that if the series were white noise, i.e., $Z_{i t}=Z_{j t}=a_{t}$, then for large n, the $\rho_{i j}(k)$ would be normally distributed with mean 0 and variance n^{-1}.

As in ARIMA modeling, diagnostic checking of transfer function modeling is to confirm (1) model validity and parsimony; (2) no lack of fit in the model; and (3) model assumptions are satisfied. Important model assumptions include that (a) a_{t} follows a white noise process and (b) a_{t} is independent of X_{t} and its lags. If the assumption (b) is not satisfied, it means that a_{t} can be predicted by X_{t} and its lags, and therefore there is lack of fit in the model. With this in mind, satisfaction of assumption (b) also implies no lack of fit in the model. The methods and tools for checking model validity and keeping model parsimony are the same as those for ARIMA modeling and one should examine the time plot of residuals.

To verify assumption (a), the sample ACF of the residual series \hat{a}_{t} may be examined. If \hat{a}_{t} is indeed a white noise process, all the sample autocorrelations of the residual series should be insignificant. To verify assumption (b), the CCF between the residuals and prewhitened input series should be examined. If a_{t} and X_{t} are independent, none of the sample cross correlations should be significant.

To simplify the diagnostic checking procedure, we may combine the above two steps into one step by suing sample CCM of the residuals and prewhitened input
series. Assuming the independence of the residuals and the prewhitened input 390 series, the CCMs between these two series would have insignificant values for the 391 entire matrix over all lags as shown below:

$$
\left[\begin{array}{ll}
\cdot & \cdot \\
& \cdot
\end{array}\right]
$$

The diagonal elements again represent the sample autocorrelations of the \hat{a}_{t} 's and 393 the prewhitened input series while the off-diagonal elements represent the cross 394 correlations of these series. The dots represent insignificant correlations. If any of 395 these correlations were significant, a " + " or " - " would appear in the relevant 396 matrix element. Prewhitening the input series is required to correctly test for the 397 independence of two series. Suppose that the residual series a_{t} is white noise but the 398 X_{t} series is autocorrelated. The resulting CCF would have a pattern very similar to 399 the ACF of the X_{t} series. Thus an independence test using CCF can be conducted 400 only when each series is serially uncorrelated. It is for this reason that the 401 autocorrelations in the input series be removed by an ARIMA filter before the 402 cross correlation test is made.

Causality Analysis of Quarterly Mergers, 1992-2011: 404 An Application of the Chen and Lee Test 405

Let us consider an economic system with two variables denoted as Y_{t}, mergers, 406 andCausality Analysis of Quarterly Mergers, 1992-2011... X_{t}, LEI or stock prices. 407 Denoting the optimal and unbiased forecast of Y_{n+1} using the information set Ω by 408 \hat{Y}_{n+1}, the conditional variance of the forecast error (which is $Y_{n+1}-\hat{Y}_{n+1}$) can be 409 written as $\operatorname{Var}\left(Y_{n+1} \mid \Omega\right)$. If the information set Ω is Y, X, or $\{Y$ and $X\}$ (i.e., including 410 all data in each variable up to and including $t=n), \operatorname{Var}\left(Y_{n+1} \mid \Omega\right)$ is the one-step- 411 ahead forecast variance of Y_{n+1} based on Y, X, or $\{Y$ and $X\}$, respectively. Below are 412 the definitions of these four possible relationships in Chen and Lee (1990): 413

1. Independency $(Y \wedge X) . Y$ and X are independent if and only if 414

$$
\begin{equation*}
\operatorname{Var}\left(Y_{n+1} \mid Y\right)=\operatorname{Var}\left(Y_{n+1} \mid Y, X\right)=\operatorname{Var}\left(Y_{n+1} \mid Y, X, X_{n+1}\right) \tag{5.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Var}\left(X_{n+1} \mid X\right)=\operatorname{Var}\left(X_{n+1} \mid Y, X\right)=\operatorname{Var}\left(X_{n+1} \mid Y, X, Y_{n+1}\right) . \tag{5.19}
\end{equation*}
$$

When two time series are independent, the one-step-ahead forecast variance of 416 Y_{n+1} based on Y will not be reduced by including additional information on X, or 417 including both X and concurrent information X_{n+1}. Similarly, the same relation- 418 ship must also hold true for the one-step-ahead forecast variance of $X_{n+1} .419$

Therefore when two time series are truly independent, no external information (including up to the forecast origin and concurrent) can improve the one-stepahead forecast variance of Y_{n+1} or X_{n+1}.
2. Contemporaneous $(Y \leftrightarrow X): Y$ and X are contemporaneously related if and only if

$$
\begin{gather*}
\operatorname{Var}\left(Y_{n+1} \mid Y\right)=\operatorname{Var}\left(Y_{n+1} \mid Y, X\right) \tag{5.20}\\
\operatorname{Var}\left(Y_{n+1} \mid Y, X\right)>\operatorname{Var}\left(Y_{n+1} \mid Y, X, N_{n+1}\right) \tag{5.21}
\end{gather*}
$$

and

$$
\begin{gather*}
\operatorname{Var}\left(X_{n+1} \mid X\right)=\operatorname{Var}\left(X_{n+1} \mid Y, X\right) \tag{5.22}\\
\operatorname{Var}\left(X_{n+1} \mid Y, X\right)>\operatorname{Var}\left(X_{n+1} \mid Y, X, Y_{n+1}\right) \tag{5.23}
\end{gather*}
$$

When two time series are contemporaneously related, the one-step-ahead forecast variance of Y_{n+1} based on Y will not be reduced by including additional information on X. However, when concurrent information X_{n+1} for the variable X is used, the one-step-ahead forecast variance of Y_{n+1} will be reduced. Similarly, the same relationship must also hold true for the one-step-ahead forecast variance of X_{n+1}.
3. Unidirectional $(Y \Leftarrow X)$: There is a unidirectional relationship from X to Y if and only if

$$
\begin{equation*}
\operatorname{Var}\left(Y_{n+1} \mid Y\right)>\operatorname{Var}\left(Y_{n+1} \mid Y, X\right) \tag{5.24}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Var}\left(X_{n+1} \mid X\right)>\operatorname{Var}\left(X_{n+1} \mid Y, X\right) \tag{5.25}
\end{equation*}
$$

When Y is unidirectionally influenced by X (i.e., X causes Y), the one-step-ahead forecast variance of Y_{n+1} based on Y will be reduced by including additional information on X. However, the one-step-ahead forecast variance of X_{n+1} based on X will not be reduced by including additional information on Y.
4. Feedback $(Y \Leftrightarrow X)$: There is a feedback relationship between Y and X if and only if

$$
\begin{equation*}
\operatorname{Var}\left(Y_{n+1} \mid Y\right)>\operatorname{Var}\left(Y_{n+1} \mid Y, X\right) \tag{5.26}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Var}\left(X_{n+1} \mid X\right)>\operatorname{Var}\left(X_{n+1} \mid Y, X\right) \tag{5.27}
\end{equation*}
$$

When Y and X have a feedback relationship, the one-step-ahead forecast variance of Y_{n+1} based on Y will be reduced by including additional information X, and similarly, the one-step-ahead forecast variance of X_{n+1} based on X will also be reduced by including additional information on Y.

In causality testing, our goal is to determine which dynamic relationship exists 446 between the variables Y and X. Chen and Lee (1990) need the reader to systemati- 447 cally test the following five statistical hypotheses:

$$
\begin{align*}
& \mathrm{H}_{1}: Y \wedge X ; \\
& \mathrm{H}_{2}: Y \leftrightarrow X ; \\
& \mathrm{H}_{3}: Y \Leftarrow X ; \tag{5.28}\\
& \mathrm{H}_{4}: Y \nRightarrow X ; \text { and } \\
& \mathrm{H}_{5}: Y \Leftrightarrow X
\end{align*}
$$

The hypotheses H_{3} and H_{4} are stated in a negative manner.
A number of time series models can be employed for causality testing (see, e.g., 450 Sims 1972; and AGS 1980). Because VARMA models have been shown to be 451 effective in forecasting, this class of models can also be used for causality testing 452 (Chen and Lee 1990). A bivariate VARMA (p, q) model can be generally expressed 453 as

$$
\left(I-\phi_{1} B-\cdots-\phi_{p} B^{p}\right)\left[\begin{array}{c}
Y_{t} \tag{5.29}\\
X_{t}
\end{array}\right]=C+\left(I-\theta_{1} B-\cdots=\theta_{q} B^{q}\right)\left[\begin{array}{c}
a_{1 t} \\
a_{2 t}
\end{array}\right]
$$

where ϕ_{i} 's and θ_{j}^{\prime} 's are 2×2 matrices, C is a 2×1 constant vector, and $a_{t}=\left[a_{1 t}, a_{2 t}\right]^{\prime} 455$ is a sequence of random shock vectors identically and independently distributed as a 456 normal distribution with zero mean and covariance matrix \sum with $\sum=\left[\begin{array}{ll}\sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22}\end{array}\right] .{ }_{457}$ For convenience, the model in (5.29) can be rewritten as 458

$$
\left[\begin{array}{ll}
\phi_{11}(B) & \phi_{12}(B) \tag{5.30}\\
\phi_{21}(B) & \phi_{22}(B)
\end{array}\right]\left[\begin{array}{l}
Y_{t} \\
X_{t}
\end{array}\right]=C+\left[\begin{array}{l}
\theta_{11}(B) \theta_{12}(B) \\
\theta_{21}(B) \theta_{22}(B)
\end{array}\right]\left[\begin{array}{l}
a_{1 t} \\
a_{2 t}
\end{array}\right]
$$

where $\quad \phi_{i j}(B)=\phi_{i j 0}-\phi_{i j 1} B-\phi_{i j 2} B^{2}-\cdots, \quad$ and $\quad \theta_{i j}(B)=\theta_{i j 0}-\theta_{i j 1} B-459$ $\theta_{i j 2} B^{2}-\cdots$. It is important to note that $\phi_{i j 0}=\theta_{i j 0}=1$ if $i=j$, and $\phi_{i j 0}=\theta_{i j 0} 460$ $=0$ if $i \neq j$.

Assuming that the form of the model in (5.30) is known, sufficient conditions for 462 testing the hypotheses $\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{3}, \mathrm{H}_{4}$, and H_{5} using $\phi_{i j}(B)$ and $\theta_{i j}(B)$ of (5.30) are 463 listed below:

Hypothesis Sufficient conditions (constraints)
$\mathrm{H}_{1}: Y \wedge X \quad \phi_{12}(B)=\phi_{21}(B)=0, \quad \theta_{12}(B)=\theta_{21}(B)=0, \quad \sigma_{12}=\sigma_{21}=0$.
$\mathrm{H}_{2}: Y \leftrightarrow X \quad \phi_{12}(B)=\phi_{21}(B)=0, \quad \theta_{12}(B)=\theta_{21}(B)=0$.
$\mathrm{H}_{3}: Y \Leftarrow X \quad \phi_{12}(B)=\theta_{12}(B)=0$.
$\mathrm{H}_{4}: Y \nRightarrow X \quad \phi_{12}(B)=\theta_{21}(B)=0$.
$\mathrm{H}_{5}: Y \Leftrightarrow X \quad$ No constraints.
The conditions in (5.32) become necessary and sufficient conditions if the model 465 in (5.31) is a pure vector AR or a pure vector MA model. In the above hypotheses, 466 H_{3} implies that the past X does not help to predict future Y, and H_{4} implies that the 467 497 relationship from unidirectional relationship, gives rise to four possible outcomes, $498 \mathrm{E}_{1}$ to E_{4}, as follows:
$499 \mathrm{E}_{1}: \mathrm{H}_{3}$ is not rejected in the pair-wise test (a) and H_{4} is rejected in the pair-wise 500
$501 \mathrm{E}_{2}: \mathrm{H}_{3}$ is rejected in test (a) and H_{4} is not rejected in test (b).
$502 \mathrm{E}_{3}: \mathrm{H}_{3}$ is not rejected in test (a) and H_{4} is not rejected in (b).
$503 \mathrm{E}_{4}: \mathrm{H}_{3}$ is rejected in test (a) and H_{4} is rejected in text (b).

The outcome of E_{1} implies that the past information of Y may help to predict 504 current X, but the past X does not help to predict current Y. Hence, this outcome 505 leads to the next pair-wise test $(\mathrm{g}), \mathrm{H}_{3}^{*}$ versus H_{3}, where we try to detect the 506 contemporaneous effect in the unidirectional relationship. If H_{3}^{*} is rejected in test 507 (g), the conclusion, $Y \Rightarrow X$, is reached; otherwise the conclusion, $Y \Rightarrow>X$, would 508 be made. Similarly, the occurrence of events E_{2} and E_{4}, respectively, suggests a 509 possible unidirectional relationship from X to Y and a possible feedback relation- 510 ship between Y and X. Therefore, the outcome of E_{2} leads to the pair-wise test $(\mathrm{h}), 511$ which helps us to choose between H_{4}^{*} and H_{4}. Under the outcome of E_{4}, it requires 512 the test (i) which discriminates between the strong feedback hypothesis $\left(\mathrm{H}_{5}^{*}\right)$ and the 513 weak feedback hypothesis $\left(\mathrm{H}_{5}\right)$. The rejection of H_{4}^{*} in test (h) implies $Y \Leftarrow X$. 514 Otherwise, the conclusion, $Y<\Leftarrow X$, would be reached. In test (i), the rejection of 515 H_{5}^{*} implies $Y \Leftrightarrow X$. If H_{5}^{*} is not rejected, we can conclude $Y<\Leftrightarrow>X$. 516

When one of the events, $\mathrm{E}_{1}, \mathrm{E}_{2}$, and E_{4}, occurs in sequence B1, the backward 517 procedure stops at the end of test (g), test (h), and test (i) respectively. If neither $\mathrm{H}_{3} 518$ nor H_{4} is rejected (i.e., E_{3} is realized), the backward procedure will move to 519 sequence B2 where two pairs of hypotheses will be examined: (c) H_{2} versus $\mathrm{H}_{3} 520$ and (d) H_{2} versus H_{4}. Again, four possible results may come out of this sequence. 521 They are summarized as follows:
$\mathrm{E}_{5}: \mathrm{H}_{2}$ is rejected in pair-wise test (c) but is not rejected in test (d). 523
$\mathrm{E}_{6}: \mathrm{H}_{2}$ is not rejected in test (c) but is rejected in test (d). 524
$\mathrm{E}_{7}: \mathrm{H}_{2}$ is rejected in either test (c) or (d). 525
$\mathrm{E}_{8}: \mathrm{H}_{2}$ is rejected in both test (c) and text (d). 526
Since test (c) examines the possibility of $Y \Rightarrow X$ and test (d) examines that of 527 $Y \Leftarrow X$, outcome E_{5} implies that the relationship $Y \Rightarrow X$ is more probable than 528 $Y \Leftarrow X$. Therefore, the result of event E_{5} leads to test (g). A similar argument 529 suggests that the occurrence of E_{6} leads to test (h). A definitive conclusion will be 530 reached at the end of tests (g) and (h). The rejection of H_{2} in both test (c) and test (d) 531 indicates the equal possibility of $Y \Leftarrow X$ and $Y \Rightarrow X$. Hence, the result of E_{8} calls 532 for test (f): H_{2} versus H_{5}. If H_{2} is rejected at test (f), then the possibility of the 533 feedback relationship is established and the backward procedure moves to test (i). 534 When H_{2} is not rejected at test (f) or when event E_{7} is realized, the backward 535 procedure then proceeds to test (e), which discriminates between the independency 536 and the contemporaneous relationship. If H_{1} is rejected in test (e), the conclusion of 537 $Y \leftrightarrow X$ is reached. Otherwise, $Y \wedge X$ will be the case.

The forward procedure, as illustrated in the previous section, begins by testing 539 the validity of the independency hypothesis at sequence F1. The hypothesis indices, 540 H_{1} to H_{5}, the outcome indices, E_{1} to E_{8}, and the pair-wise test indices, (a) to (h), are 541 consistent. The sequence F1 considers two pairs of hypotheses testing, test (e) and 542 test (j). If h_{1} is not rejected in either test, the conclusion of $Y \wedge X$ is reached and the 543 forward procedure stops. Otherwise, the procedure will move forward to sequence 544

$$
\begin{equation*}
\mathrm{LR}\left(\mathrm{H}_{i} \text { vs. } \mathrm{H}_{j}\right)+\mathrm{l}\left(\mathrm{H}_{i}\right)-\mathrm{l}\left(\mathrm{H}_{j}\right) \tag{5.33}
\end{equation*}
$$

F2, which examines the relative likelihood of the contemporaneous relationship versus the unidirectional relationship. Notice that sequence F 2 is identical to sequence B 2 , where one of the four possible outcomes, $\mathrm{E}_{5}, \mathrm{E}_{6}, \mathrm{E}_{7}$, and E_{8}, will emerge. Using the same argument on sequence $B 2$, the outcomes of E_{5} and E_{6} lead to tests (g) and (h), respectively. A conclusion from one of the four possible unidirectional relationships can be reached as a result and the forward procedure stops. The outcome of E_{7} implies $Y \leftrightarrow X$ and stops the forward procedure. However, the outcome of E_{8}, which rules out the case of a contemporaneous relationship, leads the forward procedure to sequence F 3 , which corresponds to sequence B1 in the backward procedure. Tests (a) and (b) may generate one of the four possible outcomes, E_{1}, E_{2}, E_{3}, and E_{4}. Similar to sequence $B 1$ in the backward procedure, the outcomes of E_{1} and E_{2} lead to tests (g) and (h), respectively. One of the four unidirectional relationships will be detected as a result and the procedure stops. The outcome of E_{4} implies a possible feedback relationship, and a further study, test (i), is needed to identify its nature. When H_{5}^{*} is rejected in test (i), we conclude $Y \Leftrightarrow X$; otherwise, we conclude $Y<\Leftrightarrow>X$. The outcome E_{3} implies that Y may help to predict X and X may help to predict Y, but the nature of this dynamic relationship is not clear. Therefore, test (f) is needed. When H_{2} is not rejected in test (f), the conclusion $Y \leftrightarrow X$ is reached and the procedure stops. If H_{2} is rejected in test (f), the procedure moves to test (i) to determine the nature of the feedback relationship. Consequently, either $Y \Leftrightarrow X$ or $Y<\Leftrightarrow>X$ is shown to exist.

In practice, the model(s) for the time series under study is unknown. However, the order of the VARMA model for the series can be determined using the model identification procedure discussed. The test procedures are rather robust with respect to the selected model as long as the order of the model is generally correct. Corresponding to each hypothesis, the parameters of the constrained model can be estimated using the maximum likelihood estimation method. The likelihood ratio statistic is then calculated for each pair of hypotheses:
where $1\left(\mathrm{H}_{i}\right)=-2^{*}\left(\log\right.$ of the maximum likelihood value under $\left.\mathrm{H}_{i}\right)$. The above likelihood ratio statistic follows a χ^{2}-distribution with v degrees of freedom where v in each test is the difference between the number of estimated parameters under the null (the more restrictive one) and the alternative (the less restrictive one) hypotheses. A chi-square table can then be used to determine the significance of the test statistic for the tested hypotheses.

In each procedure, an a significance level will be used in conducting all pairwise tests. Note that this a level is not the Type I error probability for the overall performance of the procedures. It serves only as a cutoff point in a sequential decision procedure. The smaller the a, the higher is the probability that the more restrictive hypothesis will not be rejected. Hence, taking a smaller a is equivalent to
favoring the more restrictive hypotheses (i.e., simpler relationships), and taking a 584 larger a is equivalent to favoring the more complicated relationships. 585

The above three statistical methods investigate different aspects of a multivariate 586 time series structure. The Sims test detects the dynamic relationship from the 587 reduced autoregressive form, and the VARMA test examines the reduced form of 588 a VARMA structure. The implementation of the Sims test is the easiest of the three 589 and requires the least subjective judgement. While the literature provides a few 590 observations on the relative performance of these three tests, Granger and Newbold 591 (1974) pointed out that the Sims test has a tendency to generate spurious 592 correlations. The Chen and Lee (1990) test begins with a traditional transfer 593 function model estimate shown in Tables 5.3-5.5.

We identify two outliers in the initial merger transfer function model using LEI 595 as the input. The estimation of the Innovational Outlier (IO, a one-time event in the 596 time series) and Level Shift (LS, a permanent change in the time series) outliers 597 reduces the residual standard deviations by about $20 \% .^{8} 598$

LEI and stock prices are statistically associated with mergers in the Chen and 599 Lee (1990) SCA analysis. 600

One sees the one and two quarter lags in the LEI in the merger transfer function 601 model equation estimate, shown in Table 5.4

Table 5.3 Mergers, LEI, and stock price causality testing: Chen and Lee (1990) test

[^24]One sees the one and two quarter lags in the LEI with estimated outliers in Table 5.5
t4.1 Table 5.4 Summary for univariate time series model-TFM1

Table 5.4 (continued)

t5.1 Table 5.5 Summary for univariate time series model-TFM1

SUMMARY OF OUTLIER DETECTION AND ADJUSTMENT

TIME	Estimate	T-VALUE	TYPE
16	0.458	5.84	IO
34	-0.034	-4.61	IS

TOTAL NUMBER OF OBSERVATIONS.

SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- TFM1

SUMMARY OF OUTLIER DETECTION AND ADJUSTMENT

TIME	ESTIMATE	T-VALUE	TYPE

12	0.256	3.70	IO
16	0.377	5.47	IO

EFFECTIVE NUMBER OF OBSERVATIONS
76
RESIDUAL STANDARD ERROR (WITHOUT OUTLIER ADJUSTMENT). . 0.865030E-01
RESIDUAL STANDARD ERROR (WITH OUTLIER ADJUSTMENT) . . . $0.690335 \mathrm{E}-01$.

Let us move to a final Chen and Lee (1990) merger model estimation. The final form of the mergers and LEI analysis with the CCCF and CCM analysis is shown in Table 5.6.

Table 5.6 Summary for univariate time series model-TFM1
t6. 1

SUMMARY OF OUTLIER DETECTION AND ADJUSTMENT

TIME	ESTIMATE	T-VALUE	TYPE
12	0.115	3.68	TC
16	0.398	6.29	IO
18	0.183	2.97	IO
29	0.153	2.73	AO
36	-0.028	-4.56	LS
42	-0.167	-2.70	IO
67	-0.151	-2.43	IO
73	-0.148	-2.39	IO

MAXIMUM NUMBER OF OUTLIERS IS REACHED
** THE OUTLIER(S) AFTER TIME PERIOD 71 OCCURS WITHIN THE
LAST FIVE OBSERVATIONS OF THE SERIES. THE IDENTIFIED TYPE
ANS THE ESTIMATE OF THE OUTLIER(S) MAY NOT BE RELIABLE

TOTAL NUMBER OF OBSERVATIONS. 76
EFFECTIVE NUMBER OF OBSERVATIONS. 73
RESIDUAL STANDARD ERROR (WITHOUT OUTLIER ADJUSTMENT) . . $0.103580 \mathrm{E}+00$
RESIDUAL STANDARD ERROR (WITH OUTLIER ADJUSTMENT) . . . 0.610908E-01

SERIES NAME MEAN STD. ERROR

1	DDMERGER	0.0268	0.1145
2	DLEI	0.0075	0.0112

NOTE: THE APPROX. STD. ERROR FOR THE ESTIMATED CORRELATIONS BELOW IS $\left(1 / \mathrm{NOBE}^{* *} .5\right)=0.11471$

SAMPLE CORRELATION MATRIX OF THE SERIES

$$
\begin{gathered}
1.00 \\
0.26^{1.00}
\end{gathered}
$$

SUMMARIES OF CROSS CORRELATION MATRICES USING +,-,., WHERE

+ DENOTES A VALUE GREATER THAN 2/SQRT (NOBE)
- DENOTES A VALUE LESS THAN - 2 /SQRT (NOBE)
. DENOTES A NON-SIGNIFICANT VALUE BASED ON THE ABOVE CRITERION

Table 5.6 (continued)
BEHAVIOR OF VALUES IN (I,J)TH POSITION OF CROSS CORRELATION MATRIX OVER ALL OUTPUTTED LAGS WHEN SERIES J LAGS SERIES I

1
2
$1 \quad .+.+.+\ldots . . \quad++\ldots . . .$.
1

2 ++......... -
2

CROSS CORRELATION MATRICES IN TERMS OF +,-,.
LAGS 1 THROUGH 6

SAMPLE CORRELATION MATRIX OF THE SERIES

$$
\begin{gathered}
1.00 \\
0.26 \quad 1.00
\end{gathered}
$$

SUMMARIES OF CROSS CORRELATION MATRICES USING +,-,., WHERE

+ DENOTES A VALUE GREATER THAN 2/SQRT (NOBE)
- DENOTES A VALUE LESS THAN -2/SQRT (NOBE)

DENOTES A NON-SIGNIFICANT VALUE BASED ON THE ABOVE CRITERION

Table 5.6 (continued)
BEHAVIOR OF VALUES IN (I,J)TH POSITION OF CROSS CORRELATION MATRIX OVER ALL OUTPUTTED LAGS WHEN SERIES J LAGS SERIES I
1
2

1 .+.+.+..... ++.........
1

2 ++..........
$2 \quad \ldots \ldots \ldots . .$.

CROSS CORRELATION MATRICES IN TERMS OF
LAGS 1 THROUGH 6

LAGS 13 THROUGH 18

LAGS 19 THROUGH 24

DETERMINANT OF $S(0)=0.146494 \mathrm{E}-05$
NOTE: $S(0)$ IS THE SAMPLE COVARIANCE MATRIX OF W (MAXLAG+1),..., W(NOBE)

AUTOREGRESSIVE FITTING ON LAG(S) 1

SUMMARIES OF CROSS CORRELATION MATRICES USING +,-,., WHERE

+ DENOTES A VALUE GREATER THAN 2/SQRT (NOBE)
- DENOTES A VALUE LESS THAN -2/SQRT (NOBE)
. DENOTES A NON-SIGNIFICANT VALUE BASED ON THE ABOVE CRITERION

Table 5.6 (continued)
BEHAVIOR OF VALUES IN (I,J)TH POSITION OF CROSS CORRELATION MATRIX OVER ALL OUTPUTTED LAGS WHEN SERIES J LAGS SERIES I
1
2
$1 \quad .+.+\ldots \ldots .+\ldots$
1

2

CROSS CORRELATION MATRICES IN TERMS OF

LAGS 13 THROUGH 18

LAGS 19 THROUGH 24

AUTOREGRESSIVE FITTING ON LAG(S) 12
SUMMARIES OF CROSS CORRELATION MATRICES USING +,-,., WHERE

+ DENOTES A VALUE GREATER THAN 2/SQRT (NOBE)
- DENOTES A VALUE LESS THAN -2/SQRT (NOBE)

DENOTES A NON-SIGNIFICANT VALUE BASED ON THE ABOVE CRITERION

Table 5.6 (continued)

BEHAVIOR OF VALUES IN (I,J) TH POSITION OF CROSS CORRELATION MATRIX OVER ALL OUTPUTTED LAGS WHEN SERIES J LAGS SERIES I

1
2

Table 5.6 (continued)
BEHAVIOR OF VALUES IN (I,J) TH POSITION OF CROSS CORRELATION MATRIX OVER ALL OUTPUTTED LAGS WHEN SERIES J LAGS SERIES I

12

Table 5.6 (continued)
BEHAVIOR OF VALUES IN (I,J)TH POSITION OF CROSS CORRELATION MATRIX OVER ALL OUTPUTTED LAGS WHEN SERIES J LAGS SERIES I
1
2

Table 5.6 (continued)

BEHAVIOR OF VALUES IN (I,J)TH POSITION OF CROSS CORRELATION MATRIX OVER ALL OUTPUTTED LAGS WHEN SERIES J LAGS SERIES I
1
2

1-.................
1

2

CROSS CORRELATION MATRICES IN TERMS OF
LAGS 1 THROUGH 6

LAGS 13 THROUGH 18

AUTOREGRESSIVE FITTING ON LAG (S) $1 \begin{array}{lllllll} & 2 & 3 & 4 & 5 & 6\end{array}$
SUMMARIES OF CROSS CORRELATION MATRICES USING +,-,., WHERE

+ DENOTES A VALUE GREATER THAN 2/SQRT (NOBE)
- DENOTES A VALUE LESS THAN -2/SQRT (NOBE)

DENOTES A NON-SIGNIFICANT VALUE BASED ON THE ABOVE CRITERION

Table 5.6 (continued)
BEHAVIOR OF VALUES IN (I,J)TH POSITION OF CROSS CORRELATION MATRIX OVER ALL OUTPUTTED LAGS WHEN SERIES J LAGS SERIES I

1
2

Table 5.6 (continued)

Table 5.6 (continued)

Table 5.6 (continued)

THE RESIDUAL COVARIANCE MATRIX IS SET TO FULL MATRIX ALL ELEMENTS IN THE MATRIX PARAMETERS ARE ALLOWED TO BE ESTIMATED -2*(LOG LIKELIHOOD AT FINAL ESTIMATES UNDER H5) IS -0.89830741E+03

THE RESIDUAL COVARIANCE MATRIX IS SET TO DIAGONAL MATRIX ALL ELEMENTS IN THE MATRIX PARAMETERS ARE ALLOWED TO BE ESTIMATED -2* (LOG LIKELIHOOD AT FINAL ESTIMATES UNDER H5*) IS -0.89665939E+03 THE RESIDUAL COVARIANCE MATRIX IS SET TO FULL MATRIX
THE $(2,1)$ TH ELEMENTS IN THE MATRIX PARAMETERS ARE SET TO ZERO -2* (LOG LIKELIHOOD AT FINAL ESTIMATES UNDER H4) IS -0.89659059E+03

THE RESIDUAL COVARIANCE MATRIX IS SET TO DIAGONAL MATRIX THE $(2,1)$ TH ELEMENTS IN THE MATRIX PARAMETERS ARE SET TO ZERO -2* (LOG LIKELIHOOD AT FINAL ESTIMATES UNDER H4*) IS -0.89537550E+03 THE RESIDUAL COVARIANCE MATRIX IS SET TO FULL MATRIX
THE $(1,2)$ TH ELEMENTS IN THE MATRIX PARAMETERS ARE SET TO ZERO -2* (LOG LIKELIHOOD AT FINAL ESTIMATES UNDER H3) IS $-0.87864498 \mathrm{E}+03$

THE RESIDUAL COVARIANCE MATRIX IS SET TO DIAGONAL MATRIX
THE $(1,2)$ TH ELEMENTS IN THE MATRIX PARAMETERS ARE SET TO ZERO -2*(LOG LIKELIHOOD AT FINAL ESTIMATES UNDER H3*) IS -0.87714380E+03

THE RESIDUAL COVARIANCE MATRIX IS SET TO FULL MATRIX
THE $(2,1)$ TH ELEMENTS IN THE MATRIX PARAMETERS ARE SET TO ZERO
THE $(1,2)$ TH ELEMENTS IN THE MATRIX PARAMETERS ARE SET TO ZERO -2* (LOG LIKELIHOOD AT FINAL ESTIMATES UNDER H2) IS $-0.87754552 \mathrm{E}+03$

THE RESIDUAL COVARIANCE MATRIX IS SET TO DIAGONAL MATRIX
THE $(2,1)$ TH ELEMENTS IN THE MATRIX PARAMETERS ARE SET TO ZERO
THE $(1,2)$ TH ELEMENTS IN THE MATRIX PARAMETERS ARE SET TO ZERO
-2* (LOG LIKELIHOOD AT FINAL ESTIMATES UNDER H1) IS -0.87634247E+03
RESULT BASED ON THE BACKWARD PROCEDURE (Y:DDMERGER, X: DLEI) DDMERGER <<= DLEI (Y IS STRONGLY CAUSED BY X)
RESULT BASED ON THE FORWARD PROCEDURE (Y:DDMERGER, X: DLEI) DDMERGER <<= DLEI (Y IS STRONGLY CAUSED BY X)

Table 5.7 The money supply and stock prices, 1967-2011

(continued)

The Chen and Lee (1990) test finds that LEI strongly cause mergers during the 1992-2011 period. Moreover, the Chen and Lee (1990) test finds that stock prices cause mergers during the 1992-2011 period. ${ }^{9}$

Money Supply and Stock Prices, 1967-2011

We examine the causal relationship between the money supply (M1P) and stock prices, as measured by the S\&P 500 during the 1967.01-2011.04 period. Thomakos and Guerard (2004) and Ashley (2004) found that the money supply passed the AU7 AGS (1980) causality test and the Ashley post-sample criteria test (2004). We obtain M1P and S\&P 500 monthly data from the St. Louis Federal Reserve economic database (FRED). ${ }^{10}$ Both series have a difference in the logarithmic process; i.e., the series are dlog-transformed. We use SCA and the Chen and Lee (1990) test for the money supply and stock returns series. There is a four-month lag in the (positive) effect of the money supply on stock prices (and returns), see Table 5.7.

[^25]Table 5.7 (continued)

Table 5.8 Summary for univariate time series model—TFM1

We find significant outliers in the money supply and stock returns series estimates, see Table 5.8.

The estimation of outliers reduces the residual standard error by approximately 20%.
However, the Chen and Lee (1990) test does not report that the money supply causes stock prices,
RESULT BASED ON THE BACKWARD PROCEDURE (Y:SP500, X: MSIM1P)
SP500 = >> MSIM1P (Y STRONGLY CAUSES X)
RESULT BASED ON THE FORWARD PROCEDURE (Y:SP500, X: MSIM1P)
SP500 ^ MSIM1P (Y IS INDEPENDENT OF X)
but rather that stock prices (returns) cause the money supply and that stock prices are independent of the money supply.

In this chapter, we fit univariate and bivariate time series models in the tradition of Box and Jenkins (1976) and Granger and Newbold (1977) and apply traditional Granger causality testing following the Ashley et al. (1980) methodology and the Vector Autoregressive Models (VAR) and Chen and Lee (1990) VARMA causality test. We test two series for causality: (1) stock prices and mergers and (2) the money supply and stock prices. We find mixed results on Granger causality testing models.

References

Ashley, R.A. 2003. "Statistically Significant Forecasting Improvements: How Much Out-ofsample Data is Likely Necessary?" International Journal of Forecasting 19, 229-240.
Ashley, R. 1998. "A New Technique for Postsample Model Selection and Validation." Journal of Economic Dynamics and Control 22, 647-665.
Ashley, R. A., C. W. J., Granger, and R. L. Schmalensee. 1980. "Advertising and Aggregate Consumption: An Analysis of Causality". Econometrica 48, 1149-1168.
Barsky, R.B. and Summers, L.H. 1988. "Gibson's Paradox and the Gold Standard." Journal of Political Economy 96: 528-550.
Box, G.E.P. and Jenkins, G.M. 1976. Time Series Analysis Forecasting and Control. San Francisco: Holden-Day.
Butters, J. K., J. Lintner, and W. L. Cary. 1951. Corporate Mergers. Boston: Division of Research, Graduate School of Business, Harvard University Press.
Chen, C. and Lee, C.J. (1990). "A VARMA Test on the Gibson Paradox." Review of Economics and Statistics 72: 96-107.
Clements, M. P. and D. F. Hendry. 1998. Forecasting Economic Time Series. Cambridge: Cambridge University Press.
Doornik, J. A. and D. F. Hendry. Empirical Econometric Modelling. Timberlake Consultants, Ltd.
Doornik, J. A. and D. F. Hendry. Modelling Dynamic Systems. Timberlake Consultants, Ltd.
Feige, E.L. and D. K. Pearce, 1976. "Economically Rational Expectations: Are Innovations in the Rate of Inflation Independent of Innovations in Measures of Monetary and Fiscal Policy?" Journal of Political Economy 84: 499-522.
Fisher, I. 1907. The Theory of Interest. New York: MacMillan.
Granger, C.W.J. 1969. "Investigating Causal Relations by Econometric Models and CrossSpectral Methods." Econometrica 37: 424-438.
Granger, C.W.J. and P. Newbold. 1974. "Spurious Regressions in Econometrics." Journal of Econometrics 1: 111-120.

Guerard, J.B., Jr. 1985. "Mergers, Stock Prices, and Industrial Production: An Empirical Test of the Nelson Hypothesis", in O.D. Anderson, Ed., Time Series Analysis: Theory and Practice 7, Amsterdam: Elsevier, 239-248.
Golbe, D. L. and L. J. White. 1993. "Catch a Wave: The Time Series Behavior of Mergers". The Review of Economics and Statistics 75, 493-499.
Guerard, J. B., Jr. and J. B. McDonald. 1995. "Mergers in the United States: A Case Study in Robust Time Series", in C. F. Lee., Ed., Advances in Financial Planning and Forecasting, Greenwich, CT: JAI Press, 95-107.
Guerard, John B., Jr. 2004. "The Forecasting Effectiveness of the U.S. Leading Economic Indicators: Further Evidence and Initial G7 Results." In P. Dua, Ed., Business Cycles and Economic Growth: An AnalysisUsing Leading Indicators. New York: Oxford University Press, 174-187.
Hamilton, J.D. 1994. Time Series Analysis, Princeton, Princeton University Press.
Lee, C.J. and E. Petruzzi, E. 1986. "The Gibson Paradox and Monetary Standard." The Review of Economics and Statistics 68: 189-196.
Liu, L.M. 1999. Forecasting and Time Series Analysis Using the SCA Statistical System: Volume 2. Chicago: Scientific Computing Associates Corp.

Lutkepohl, H. 1993. Introduction to Multiple Time Series Analysis. $2^{\text {nd }}$ edition. Berlin: SpringerVerlag.
McCracken, M. 2000. "Robust Out-of-Sample Inference." Journal of Econometrics 39, 195-223
Melicher, R., W. J. Ledolter, and L. J. D’Antonio. 1983. "A Time Series Analysis of Aggregate Merger Activity". The Review of Economics and Statistics 65, 423-430.
Nelson, C.R. and G.B. Schwertz, G.B. 1982. "Tests for Predictive Relationships Between Time Series Variables: A Monte Carlo Investigation." Journal of the American Statistical Association 77: 11-18.
Nelson, R. L. 1959. Merger Movements in American Industry, 1895-1956. Princeton: Princeton University Press.
Nelson, R. L. 1966. "Business Cycle Factors in the Choice between Internal and External Growth", in W.W. Alberts and J. E. Segall, Eds, The Corporate Merger. Chicago: The University of Chicago Press, 52-66.
Pierce, D.A. and L. D. Haugh, L.D. 1977. "Causality in Temporal Systems: Characterizations and Survey," Journal of Econometrics 5: 265-293.
Sargent, T.J. 1973. "Interest Rates and Prices in the Long Run." Journal of Money, Credit and Banking: 385-463.
Shiller, R.J. and Siegel, J.J. 1997. "The Gibson Paradox and Historical Movement in Real Interest Rates." Journal of Political Economy 85: 891-907.
Sims, C.A. 1972. "Money, Income and Causality," American Economic Review 62: 540-552.
Sims, C.A. 1980. "Macro-Economics and Reality." Econometrica 48: 1-48.
Tiao, G.C. and G.E. P. Box, G.E.P. 1981. "Modeling Multiple Time Series with Applications." Journal of American Statistical Association 76: 802-816.
Stigler, G. J. 1950. Monopoly and Oligopoly by Merger. American Economic Review 40, 23-34.
Thomakos, D. and J. Guerard. 2004. "Naïve, ARIMA, Transfer Function, and VAR Models: A Comparison of Forecasting Performance." The International Journal of Forecasting 20, 53-67.
Wicksell, K. 1907. "The Influence of the Rate of Interest on Prices." Economic Journal 17: 213-220.
Zellner, A. and Palm, F. 1974. "Time Series Analysis and Simultaneous Equation Econometric Models." Journal of Econometrics 2: 17-54.
Zarnowitz, V. 1992. Business Cycles: Theory, History, Indicators, and Forecasting. Chicago: The University of Chicago Press.

Author Queries

```
Chapter No.: 5 192189_1_En
```

Query Refs.	Details Required	Author's response
AU1	Granger and Newbold (1977) is cited in the text but its bibliographic information is missing. Kindly provide its bibliographic information. Otherwise, please delete it from the text.	
AU2	Lintner (1971) is cited in the footnote 6 but its bibliographic information is missing. Kindly provide its bibliographic information. Otherwise, please delete it from the footnote 6 .	
AU3	Doornik and Hendry (2009a, b) is cited in the text but its bibliographic information is missing. Kindly provide its bibliographic information. Otherwise, please delete it from the text.	
AU4	Liu and Hanssens (1982) is cited in the text but its bibliographic information is missing. Kindly provide its bibliographic information. Otherwise, please delete it from the text.	
AU5	Please check whether the sentence "The method uses a table which..." is ok in terms of readability.	
AU6	Please check the usage of the term "sever" in the sentence "If there are several explanatory..."	
AU7	Ashley (2004) is cited in the text but its bibliographic information is missing. Kindly provide its bibliographic information. Otherwise, please delete it from the text.	
AU8	Barsky and Summers (1988); Butters et al. (1951); Clements and Hendry (1998); Doornik and Hendry (n.d.); Doornik and Hendry (n.d.); Feige and Pearce (1976); Fisher (1907); Guerard (2004); Hamilton (1994); Lee and Petruzzi (1986); Lutkepohl (1993); McCracken (2000); Nelson and Schwertz (1982); Pierce and Haugh (1977); Sargent (1973); Shiller and Siegel (1997); Sims (1980); Wicksell (1907); Zellner and Palm (1974); Zarnowitz (1992) have been provided in the reference list but citations in the text are missing. Please advise location of citations. Otherwise, delete it from the reference list.	

Chapter 6 1
A Case Study of Portfolio Construction 2Using the USER Data and the Barra ${ }^{3}$Aegis System 4

In this chapter, we estimate a set of monthly regression models to create monthly 5 expected returns and demonstrate the effectiveness of the Barra Aegis system. The 6 Aegis system creates and tests investment management strategies, producing 7 portfolios and attributing portfolio returns according to the Barra multifactor risk 8 model. We find support with the Barra Aegis for the composite modeling, the 9 United States Expected Returns (USER), developed and estimated in Chap. 4, 10 using fundamental, expectations, and momentum-based data for the US equities 11 during the December 1979-December 2009 period. To measure risk, one can vary 12 the period of volatility calculation, such as using 5 years of monthly data in 13 calculating the covariance matrix, as was done in Bloch et al. (1993), or 1 year of 14 daily returns to calculate a covariance matrix, as was done in Guerard et al. (1993), 15 or 2-5 years of data to calculate factor returns as in the Barra system, discussed in 16 Menchero et al. (2010). The Capital Asset Pricing Model, the CAPM, holds that the 17 return to a security is a function of the security beta:

$$
\begin{equation*}
R_{j t}=R_{\mathrm{F}}+\beta_{j}\left[E\left(R_{\mathrm{Mt}}\right)-R_{F}\right]+e_{j t}, \tag{6.1}
\end{equation*}
$$

where $R_{j t}$ is expected security return at time $t ; E\left(R_{\mathrm{M} t}\right)$, expected return on the market at time $t ; R_{\mathrm{F}}$, risk-free rate; β_{j}, security beta, a random regression coefficient; and $e_{j t}$, randomly distributed error term. ${ }^{1}$

Let us estimate beta coefficients to be used in the CAPM to determine the rate of return on equity. One can fit a regression line of monthly holding period returns (HPRs) against the excess returns of an index such as the value-weighted Center for Research in Security Prices (CRSP) index, which is an index of all publicly traded stocks. Most stock betas are estimated using 5 years of monthly data, some sixty observations, although one can use almost any number of observations. ${ }^{2}$ One generally needs at least thirty observations for normality of residuals to occur. One can use the Standard \& Poor's 500 Index, or the Dow Jones Industrial Index (DJIA), or many other stock indexes.

Empirical tests of the CAPM often resulted in unsatisfactory results. That is, the average estimated market risk premium was too small, relative to the theoretical market risk premium and the average estimated risk-free rate exceeded the known risk-free rate. Thus low-beta stocks appeared to earn more than was expected and high-beta stocks appeared to earn less than was expected (Black et al. (1972)). The equity world appeared more risk-neutral than one would have expected during the 1931-1965 period. There could be many issues with estimating betas using ordinary least squares. Roll $(1969,1977)$ and Sharpe (1971) identified and tested several issues with beta estimations. Bill Sharpe estimated characteristic lines, the line of stock or mutual fund return versus the market return, using ordinary least squares (OLS) and the mean absolute deviation (MAD) for the 30 stocks of the Dow Jones Industrial Average stocks versus the Standard and Poor's 425 Index (S\&P 425) for the 1965-1970 period and 30 randomly selected mutual funds over the 1964-1970 period versus the S\&P 425. Sharpe found little difference in the OLS and MAD betas, and concluded that the MAD estimation gains may be "relatively modest."

[^26]The difficulty of measuring beta and its corresponding SML gave rise to extra- 46 market measures of risk, found in the work of King (1966), Farrell (1973), 47 Rosenberg (1973, 1976, 1979), Stone (1974, 2002), Ross (1976), Ross and Roll 48 (1980), Blin and Bender (1995), and Blin et al. (1998) and culminated in the 49 creation of the MSCI Barra and Sungard APT portfolio creation and management 50 systems. We highlight the Barra Aegis system in this analysis. The Barra risk model 51 was developed in the series of studies by Rosenberg and completely discussed in 52 Rudd and Clasing (1982) and Grinhold and Kahn (2000). The extra-market risk 53 measures are a seemingly endless source of discussion, debate, and often frustration 54 among investment managers. Farrell $(1974,1997)$ estimated a four-"factor" extra- 55 market model. Farrell took an initial universe of 100 stocks in 1974 (due to 56 computer limitations), and ran market models for each stock to estimate betas and 57 residuals from the market model:

$$
\begin{gather*}
R_{j_{t}}=a_{j}+b_{j} R_{\mathrm{M}_{t}}+e_{j} \tag{6.4}\\
e_{j_{t}}=R_{j_{t}}-\hat{a}_{j}-\hat{b}_{j} R_{\mathrm{M}_{T}} \tag{6.5}
\end{gather*}
$$

The residuals of (6.5) should be independent variables, if one factor (the market) 59 is sufficient for modeling security returns. That is, after removing the market impact 60 by estimating a beta, Farrell hypothesized that the residual of IBM should be 61 independent of Dow, Merck, or Dominion Resources. The residuals should be 62 independent, of course, with the market, in theory. The expected returns should 63 be priced by only the beta. Farrell (1974) examined the correlations among the 64 security residuals of (6.9) and found that the residuals of IBM and Merck were 65 highly correlated, but the residuals of IBM and D (then Virginia Electric \& Power) 66 were not correlated. Farrell used a statistical technique known as Cluster Analysis 67 to create clusters, or groups, of securities, having highly correlated market model 68 residuals. Farrell found four clusters of securities based on his extra-market covari- 69 ance. The clusters contained securities with highly correlated residuals that were 70 uncorrelated with residuals of securities in the other clusters. Farrell referred to his 71 clusters as "Growth Stocks" (electronics, office equipment, drug, hospital supply 72 firms, and firms with above-average earnings growth), "Cyclical Stocks" (Metals, 73 machinery, building supplies, general industrial firms, and other companies with 74 above-average exposure to the business cycle), "Stable Stocks" (banks, utilities, 75 retailers, and firms with below-average exposure to the business cycle), and 76 "Energy Stocks" (coal, crude oil, and domestic and international oil firms). 77

Bernell Stone (1974) developed a two-factor index model which modeled equity 78 returns as a function of an equity index and long-term debt returns. Both equity and 79 debt returns had significant betas. In recent years, Stone and Guerard (2010a, b) 80 have developed a portfolio algorithm to generate portfolios that have similar stock 81 betas (systematic risk), market capitalizations, dividend yield, and sales growth 82 cross sections, such that one can access the excess returns of the analysts' forecasts, 83 forecast revisions, and breadth model, as one moves from low (least preferred) to 84 high (most preferred) securities with regard to his or her portfolio construction 85
variable (i.e., CTEF or a composite model of value and analysts' forecasting factors). In the Stone and Guerard (2010a) work, the ranking on forecasted return and grouping into fractile portfolios produce a set of portfolios ordered on the basis of predicted return score. This return cross section will almost certainly have a wide range of forecasted return values. However, each portfolio in the cross section will almost never have the same average values as that of the control variables. To produce a cross-sectional match on any of the control variables, we must reassign stocks. For instance, if we were trying to make each portfolio in the cross section that has the same average beta value, we could move a stock with an above-average beta value into a portfolio whose average beta value is below the population average. At the same time, we could shift a stock with a below-average beta value into the above-average portfolio from the below-average portfolio. The reassignment problem can be formulated as a mathematical assignment program (MAP). Using the MAP produces a cross-sectional match on beta or any other risk control variable. All (fractile) portfolios should have explanatory controls equal to their population average value.

In 1976, Ross published his "Arbitrage Theory of Capital Asset Pricing," which held that security returns were a function of several (4-5) economic factors. Ross and Roll (1980) empirically substantiated the need for $4-5$ factors to describe the return generating process. In 1986, Chen, Ross, and Roll (CRR) developed an estimated multifactor security return model based on

$$
\begin{equation*}
R=a+b_{\mathrm{MP}} \mathrm{MP}+b_{\mathrm{DEI}} \mathrm{DEI}+b_{\mathrm{UI}} \mathrm{UI}+b_{\mathrm{UPR}} \mathrm{UPR}+b_{\mathrm{UTS}} \mathrm{UTS} t e_{t}, \tag{6.6}
\end{equation*}
$$

where MP is monthly growth rate of industrial production; DEI, change in expected inflation; UI, unexpected inflation; UPR, risk premium; and UTS, term structure of interest rates.

CRR defined unexpected inflation as the monthly (first) differences of the Consumer Price Index (CIP) less the expected inflation rate. The risk premia variable is the "Baa and under" bond return at time and less the long-term government bond return. The term structure variable is the long-term government bond return less the Treasury bill rates, known at time $t-1$, and applied to time t. When CRR applied their five-factor model in conjunction with the value-weighted index betas, during the 1958-1984 period, the index betas are not statistically significant whereas the economic variables are statistically significant. The Stone, Farrell, and CRR multifactor model used $4-5$ factors to describe equity security risk. The models used different statistical approaches and economic models to control for risk.

The BARRA Model: The Primary Institutional Risk Model

As discussed previously, the most frequent approach for the prediction of risk is to use historical price behavior in the estimation of beta. Beta was defined as the sensitivity of the expected excess rate of return on the stock to the expected excess
rate of return on the market portfolio. Unfortunately, the word expected has been 124 used, and no good records of aggregate expectations exist. Thus, a major assump- 125 tion has to be made to enable average (realized) rates of return to be used in place of 126 expected rates of return, which, in turn, permits us to use the slope of regression line 127 (estimated from realized data) to form the basis for a prediction of beta. 128

If this assumption, which essentially states that the future is going to be similar to 129 the "average past," is made, then the estimation of historical beta proceeds as 130 follows. Choose a suitable number of periods for which the excess returns of the 131 security and market portfolio proxy are known. There is a subtle trade-off here. 132 When more data points are used, the accuracy of the estimation procedure is 133 improved, provided the relationship being estimated does not change. Usually the 134 relationship does change; therefore, a small number of most recent data points is 135 preferred so that dated information will not obscure the current relationship. It is 136 usually accepted that a happy medium is achieved by using 60 monthly returns. ${ }^{3} 137$ The security series is then regressed against the market portfolio series. This 138 provides an estimate of beta (which is equivalent to the slope of the characteristic 139 line) and the residual variance.

Menchero et al. (2010) use the CAPM framework and decompose the return of any asset into a systematic component, correlated with the market, and a residual 142 uncorrelated with the market. The CAPM predicts that the residual return is zero. 143 The predicted value of the residual does not preclude correlations among residual 144 returns, because there may be multiple sources of equity return co-movement, even 145 if there is a single source of expected return. It can be shown that if the regression 146 equation is properly specified and certain other conditions are fulfilled, then the beta 147 obtained is an optimal estimate (actually, minimum-variance, unbiased) of the true 148 historical beta averaged over past periods. However, this does not imply that the 149 historical beta is a good predictor of future beta. For instance, one defect is that 150 random events impacting the firm in the past may have coincided with market 151 movements purely by chance, causing the estimated value to differ from the true 152 value. Thus, the beta obtained by this method is an estimate of the true historical 153 beta obscured by measurement error. Rudd and Clasing (1982) discussed beta 154 prediction with respect to the use of historic price information. Three possible 155 prediction methods for beta were suggested. These are the following: 156

1. Naïve: $\hat{\beta}_{j}=1.0$ for all securities (i.e., every security has the average beta).
2. Historical: $\hat{\beta}_{j}=\mathrm{H} \hat{\beta}_{j}$, the historical beta obtained as the coefficient forms an ordinary least squares regression.

[^27]3. Bayesian-adjusted beta: $\hat{\beta}_{j}=1.0+\mathrm{BA}\left(\mathrm{H} \hat{\beta}_{j}-1\right)$, where the historical betas are adjusted toward the mean value of 1.0.

In each case, the prediction of residual risk is obtained by subtracting the systematic variance $\left(\hat{\beta}_{j}^{2} V_{\mathrm{M}}\right)$ from the total variance of the security. The residual variance is obtained directly from the regression.

However, relying simply upon historical price data is unduly restricting in that there are excellent sources of information which may help in improving the prediction of risk. For instance, most analysts would agree that fundamental information is useful in understanding a company's prospects. The fundamental predictions of risk, which were pioneered principally by Professor Barr Rosenberg and Vinay Marathe of the University of California at Berkeley, became the foundation of the Barra system.

The historical beta estimate will be an unbiased predictor of the future value of beta, provided that the expected change between the true value of beta averaged over the past periods and its value in the future is zero. If this expected change is not zero, then the historical beta estimate will be misleading (biased). Thus, if historical betas are used as a prediction of beta, there is an implicit assumption that the future will be similar to the past. Is this assumption reasonable? The answer is, probably not. The investment environment changes so rapidly that it would appear imprudent to use averages of historical (5-year) price data as predictions of the future.

Barr Rosenberg and Walt McKibben (1973) estimated the determinants of security betas and standard deviations. This estimation formed the basis of the Rosenberg extra-market component study (1974), in which security-specific risk could be modeled as a function of financial descriptors, or known financial characteristics of the firm. Rosenberg and McKibben found that the financial characteristics that were statistically associated with beta during the 1954-1970 period were:

1. Latest annual proportional change in earnings per share;
2. Liquidity, as measured by the quick ratio;
3. Leverage, as measured by the senior debt-to-total assets ratio;
4. Growth, as measured by the 5-year growth in earnings per share;
5. Book-to-Price ratio;
6. Historic beta;
7. Logarithm of stock price;
8. Standard deviation of earnings per share growth;
9. Gross plant per dollar of total assets;
10. Share turnover.

Rosenberg and McKibben used 32 variables and a 578 -firm sample to estimate the determinants of betas and standard deviations. For betas, Rosenberg and McKibben found that the positive and statistically significant determinants of beta were the standard deviation of eps growth, share turnover, the price-to-book
multiple, and the historic beta. ${ }^{4}$ Rosenberg et al. (1975), Rosenberg and Marathe 202
(1979), Rudd and Rosenberg (1979, 1980), and Rudd and Clasing (1982) expanded 203 upon the initial Rosenberg MFM framework. 204 AU12
In 1975, Barr Rosenberg and his associates introduced the BARRA US Equity 205
Model, often denoted USE1. We spend a great deal of time on the BARRA USE1 206 and USE3 models because 70 of the 100 largest investment managers use the 207

[^28]1. Market variability. This category is designed to capture the company as perceived by the market. If the market were completely efficient, then all information on the state of the company would be reflected in the stock price. Here the historical prices and other market variables are used in an attempt to reconstruct the state of the company. The descriptors include historical measures of beta and residual risk, nonlinear functions of them, and various liquidity measures.
2. Earnings variability. This category refers to the unpredictable variation in earnings over time, so descriptors such as the variability of earnings per share and the variability of cash flow are included.
3. Low valuation and unsuccess. How successful has the company been, and how is it valued by the market? If investors are optimistic about future prospects and the company has been successful in the past (measured by a low book-to-price ratio and growth in per share earnings), then the implication is that the firm is sound and that future risk is likely to be lower. Conversely, an unsuccessful and lowly valued company is more risky.
4. Immaturity and smallness. A small, young firm is likely to be more risky than a large, mature firm. This group of descriptors attempts to capture this difference.
5. Growth orientation. To the extent that a company attempts to provide returns to stockholders by an aggressive growth strategy requiring the initiation of new projects with uncertain cash flows rather than the more stable cash flows of existing operations, the company is likely to be more risky. Thus, the growth in total assets, payout and dividend policy, and earnings/price ratio is used to capture the growth characteristics of the company.
6. Financial risk. The more highly levered the financial structure, the greater is the risk to common stockholders. This risk is captured by measures of leverage and debt to total assets.

Finally industry in which the company operates is another important source of information. Certain industries, simply because of the nature of their business, are exposed to greater (or lesser) levels of risk (e.g., compare airlines versus gold stocks). Rosenberg and Marathe used indicator (dummy) variables for 39 industry groups as the method of introducing industry effects.

BARRA USE3 Model. ${ }^{5}$ The BARRA USE1 Model predicted risk, which required the evaluation of the firm's response to economic events, which were measured by the company's fundamentals. Let us review the Barra prediction rules for the systematic risk and residual risk are expressed in terms of the descriptors, as discussed in Rudd and Clasing (1982). There are three major steps. First, for the time period during which the model is to be fitted, obtain common stock returns and company annual reports (for instance, from the COMPUSTAT database). ${ }^{6}$ In order to make comparisons across firms meaningful, the descriptors must be normalized so that there is a common origin and unit of measurement, Table 6.1.

Table 6.1 Components of the risk indices

1. Index of market variability

Historical beta estimate
Historical sigma estimate
Share turnover, quarterly
Share turnover, 12 months
Share turnover, 5 years
Trading volume/variance
Common stock price (ln)
Historical alpha estimate
Cumulative range, 1 year
2. Index of earnings variability

Variance of earnings
Extraordinary items
Variance of cash flow
Earnings covariability
Earnings/price covariability
3. Index of low valuation and unsuccess

Growth in earnings/share
Recent earnings change
Relative strength
Indicator of small earnings/price ratio
Book/price ratio
Tax/earnings, 5 years
Dividend cuts, 5 years
Return on equity, 5 years
4. Index of immaturity and smallness

Total assets (log)
Market capitalization (log)
Market capitalization
Net plant/gross plant
Net plant/common equity
(continued)

[^29]Table 6.1 (continued)
Inflation adjusted plant/equity
Trading recency
Indicator of earnings history
5. Index of growth orientation
Payout, last 5 years
Current yield
Yield, last 5 years
Indicator of zero yield
Growth in total assets
Capital structure change
Earnings/price ratio
Earnings/price, normalized
Typical earnings/price ratio, 5 years
6. Index of financial risk
Leverage at book
Leverage at market
Debt/assets
Uncovered fixed charges
Cash flow/current liabilities
Liquid assets/current liabilities
Potential dilution
Price-deflated earnings adjustment
Tax-adjusted monetary debt

The listing of the USE1 risk index components, as was reported in Rudd and 217 Clasing (1982), was very informative. One wonders as to the weighting of the risk 218 index components. The reader can find the variable weights in the risk index 219 components in Rosenberg and Marathe (1976, see p 20). The Index of Market 220 AU14 Variability was primarily determined by the historic Beta and the historic standard 221 deviation of residual risk. The Index of Earnings Variability was primarily deter- 222 mined by the coefficient of variation of annual earnings per share in the last 5 years 223 and the typical proportion of earnings that are extraordinary items. The Index of 224 Unsuccess and Low Valuation was primarily determined by the measure of propor- 225 tional change in adjusted earnings per share in the past two fiscal years and the 226 "relative strength," the logarithmic rate of return, during the last year. The Index of 227 Immaturity and Smallness was primarily determined by the ratio of gross plant to 228 total equity and the logarithm of total assets. The Index of Growth Orientation was 229 primarily determined by the normal value of the dividend yield during the last 5230 years and the 5-year asset growth rate. The Index of Financial Risk was primarily 231 determined by the total debt-to-assets ratio and the liquidity of the current financial 232 position. The equations that formed the Index weights in USE1 were proprietary 233 and undisclosed in USE2, USE3, and USE4. 234

In the Barra risk model, data is normalized. The normalization takes the follow- 235 ing form. First, the "raw" descriptor Values for each company are computed. 236 Next, the capitalization-weighted value of each descriptor for all the securities in 237

$$
\begin{equation*}
\hat{\beta}_{i}=\hat{b}_{o}+\hat{b}_{l} d_{l i}+\ldots+\hat{b}_{J} d_{J i} \tag{6.8}
\end{equation*}
$$

the S\&P 500 is computed and then subtracted from each raw descriptor. The transformed descriptors now have the property that the capitalization-weighted value for the S\&P 500 stocks is zero. This step unambiguously fixes the "origin" for measurement; however, the unit of "length" is still arbitrary. To standardize the length, the standard deviation of each descriptor is calculated within a universe of large companies (defined as having a capitalization of $\$ 50$ million or more). The descriptor is now further transformed by setting the value +1 to be one standard deviation above the S\&P 500 mean (i.e., one unit of length corresponds to one standard deviation). Rudd and Clasing (1982) write

$$
\begin{equation*}
\mathrm{ND}=(\mathrm{RD}-\mathrm{RD}[\mathrm{~S} \& \mathrm{P}]) / \mathrm{STDEV}[\mathrm{RD}] \tag{6.7}
\end{equation*}
$$

where ND is the normalized descriptor value; RD the raw descriptor value as computer from the data; $\mathrm{RD}[\mathrm{S} \mathrm{\& P}]$ the raw descriptor value for the (capitalizationweighted) S\&P 500; and STDEV[RD] the standard deviation of the raw descriptor value calculated from the universe of large companies.

At this stage each company is indentified by a series of descriptors which indicate its fundamental position. If a descriptor value is zero, then the company is "typical" of the S\&P 500 (for this characteristic) because the S\&P 500 and the company both have the same raw value. Conversely, if the descriptor value is nonzero, then the company is atypical of the S\&P 500, and this information may he used to adjust the prior prediction in order to obtain a better posterior prediction of risk.

In the second step, one groups the monthly data by quarters, and assemble the descriptors of each company as they would have appeared at the beginning of the quarter. The prediction rule is then fitted by linear regression which relates each monthly stock return in that quarter to the previously computed descriptors. These adjustments are combined as follows. Initially, in the absence of any fundamental information, the beta is set equal to its historical value. Then each descriptor is examined in turn, and if it is atypical, the corresponding adjustment to beta is made. For example, if two companies with the same historical beta are identical except that they have very different capitalizations, then one adjusts the risk of the largecapitalization company downward, relative to that of the small-capitalization company, because large companies typically have less risk than small companies. The fundamental knowledge of additional information improves the prediction of risk. The econometric prediction rule is similar; the prediction is obtained by adding the adjustments for all descriptors, in addition to the industry effect, to the historical beta estimate. The prediction rule for the beta of security i, in a given month, can be written as follows:
where $\hat{\beta}_{i}$ is the predicted beta; \hat{b}_{j} the estimated response coefficients in the prediction rule; $d_{j i}$ the normalized descriptor values for security i; and J the total number of descriptors.

In this prediction rule we can think of the first descriptor, $d_{1 i}$, as the historical 276 beta, $H \hat{\beta}$. Thus, if only the first descriptor is used, the prediction rule is similar to the 277 specification of the Bayesian adjustment, (6.8). In this case, the linear regression 278 provides estimates for \hat{b}_{o} and \hat{b}_{1}, which indicate the optimal adjustment to historical 279 beta for predictive purposes. Other descriptors in addition to historical beta are 280 employed and appear in the prediction rule as $d_{2 i}$. In other words, the fundamental 281 predictions are direct generalizations of the "price only" predictions. 282

If the company is completely typical of market (i.e., the descriptors other than 283 historical beta are all zero), then there is no further adjustment to the Bayesian- 284 adjusted historical beta. This is intuitive; if the company is in no sense "special," 285 then there is no reason to believe that the averaged true beta in the past will not 286 equal the true beta in the future. However, if the company is atypical, then not all 287 the descriptors (other than historical beta) will be zero. For simplicity, suppose that 288 only the first (historical beta) and second descriptors are nonzero, where the latter 289 has a value of one (i.e., this company is one standard deviation from the S\&P 500290 value). The prediction rule, (6.8), shows that the predicted beta is found by adding 291 the adjustment \hat{b}_{2} to the Bayesian-adjusted historical beta. In general, the total 292 adjustment is the weighted sum of the coefficients in the prediction rule, where the 293 weights are the normalized descriptor values which indicate the company's degree 294 of deviance from the typical company.

In the third step, the Barra risk model estimates the company's exposure to each 296 of the common factors and the prediction of the residual risk components. The first 297 task is to form summary measures or indices of risk to describe all aspects of the 298 company's investment risk. These are obtained by forming the weighted average of 299 the descriptor values in each of the six categories introduced above, where the 300 weights are the estimated coefficients from the prediction rule, (6.8), for systematic 301 or residual risk. This provides six summary measures of risk, the risk indices, for 302 each company. Again, these indices are normalized so that the S\&P 500 has a value 303 of zero on each index and a value of one corresponds to one standard deviation 304 among all companies with capitalization of $\$ 50$ million or more. 305

The prediction of residual risk is now found by performing a regression on the 306 cross section of all security residual returns as the dependent variable where the 307 independent variables are the risk indices. ${ }^{7}$ The form of the regression, in a given 308 month, is shown in (6.9): 309

$$
\begin{equation*}
r_{i}-\hat{\beta}_{i} r_{\mathrm{M}}=c_{1} \mathrm{RI}_{1 i}+\ldots+c_{6} \mathrm{RI}_{6 i}+c_{7} \mathrm{IND}_{1 i}+\ldots+c_{45} \mathrm{IND}_{39, i}+u_{i} \tag{6.9}
\end{equation*}
$$

where r_{i} is the excess return on security $i ; \hat{\beta}_{i}$, the predicted beta, from (6.9); and $R_{\mathrm{M}}, 310$ the excess return on the market portfolio so that $r_{i}-\hat{\beta}_{i} r_{\mathrm{M}}$ is the residual return on 311

[^30]security $i ; \mathrm{RI}_{1 i}, \ldots, \mathrm{RI}_{6 i}$ are the six risk indices for security $i, \mathrm{IND}_{1 i}, \ldots, \mathrm{IND}_{39, i}$ are 313 the dummy variables for the 39 industry groups; u_{i} is the specific return for security random excess return on the portfolio for a single factor is given by
\[

$$
\begin{equation*}
R_{\mathrm{P}}=\sum h_{\mathrm{P} j} r_{j}=\sum h_{\mathrm{P} j} b_{j} f+\sum h_{\mathrm{P} j} u_{j}=b_{\mathrm{P}} f+\sum h_{\mathrm{P} j} u_{j} \tag{6.10}
\end{equation*}
$$

\]

328 where $b_{\mathrm{P}}=\sum h_{\mathrm{P} j} r_{j}$. The mean return and variance are

$$
E\left[r_{\mathrm{P}}\right]=a_{\mathrm{P}}+b_{\mathrm{P}} E[f],
$$

329 where $a_{\mathrm{P}}=\sum h_{\mathrm{P} j} a_{j}$, and

$$
\begin{equation*}
\operatorname{Var}\left[r_{\mathrm{P}}\right]=b_{j}^{2} \operatorname{Var}[f]+\sum h_{\mathrm{P}}^{2} \sigma_{j}^{2} \tag{6.11}
\end{equation*}
$$

330 where we have made use of the fact that the security-specific risk is specific, i.e., 331 independent across stocks and independent of the factor return.

The market portfolio is just one particular portfolio. Let the security weights be $333 h_{\mathrm{M} 1}, h_{\mathrm{M} 2}, \ldots, h_{\mathrm{M} N}$, and notice that $b_{\mathrm{M}}=\sum h_{\mathrm{M} j} b_{j}$. We can set b_{M} to any value, and 334 so we choose to set $b_{\mathrm{M}}=1 .{ }^{8}$ The market return statistics are then

$$
E\left[r_{\mathrm{M}}\right]=a_{\mathrm{M}}+E[f]
$$

335 and

$$
\begin{equation*}
\operatorname{Var}\left[r_{\mathrm{M}}\right]=\operatorname{Var}[f]+\sum h_{\mathrm{M}}^{2} \sigma_{j}^{2} \tag{6.12}
\end{equation*}
$$

[^31]The regression coefficient of an individual stock's rate of return onto the market, 336 or beta, is given by

$$
\begin{align*}
\beta_{j} & =\operatorname{Cov}\left[r_{j}, r_{\mathrm{M}}\right] / \operatorname{Var}\left[r_{\mathrm{M}}\right] \\
& =\operatorname{Cov}\left[b_{i} f+u_{j}, f+\sum h_{\mathrm{M} k} u_{k}\right] / \operatorname{Var}\left[r_{\mathrm{M}}\right] \\
& =\left(b_{j} \operatorname{Var}[f]+h_{\mathrm{M} j} \sigma_{j}^{2}\right) / \operatorname{Var}\left[r_{\mathrm{M}}\right] \\
& =\left(b_{j} \operatorname{Var}[f]+h_{\mathrm{M} j} \sigma_{j}^{2}\right) /\left(\operatorname{Var}[f]+\sum h_{\mathrm{M}_{j}}^{2} \sigma_{j}^{2}\right) \tag{6.13}
\end{align*}
$$

so that

$$
\beta_{\mathrm{P}}=\left(b_{\mathrm{P}} \operatorname{Var}[f]+\sum h_{\mathrm{M} j} h_{\mathrm{P} j} \sigma_{j}^{2}\right) /\left(\operatorname{Var}[f]+\sum h_{\mathrm{M}_{j}}^{2} \sigma_{j}^{2}\right)^{9}
$$

Notice that the regression coefficient on the market and the regression coefficient 339 on the factor (i.e., b_{j} and β_{j}, and b_{P} and β_{P}) are close but not identical. The 340 difference lies in the last terms in the numerator and denominator in both cases. 341 Where a single security is concerned, (6.13), the two sensitivities can only be equal 342 when the market portfolio is composed of a single security; however, for a portfo- 343 lio, the sensitivities will be close whenever the portfolio and market holdings are 344 approximately equal (i.e., whenever $\sum h_{\mathrm{M} j} h_{\mathrm{P} j}$ is close to $\sum h_{\mathrm{M} j}^{2}$). In other words, 345 for well-diversified portfolios (for instance, the majority of institutional portfolios) 346 we may approximate the portfolio beta by its regression coefficient on the factor. 347

This approximation is useful for the analysis of residual return. Recall that the 348 residual return of an individual portfolio (relative to the market portfolio) is equal to 349 the total portfolio excess return on an equal-beta-levered market portfolio. That is, 350 the residual return measures the return due to nonmarket strategy:

$$
\text { Residual return }=r_{\mathrm{P}}-\beta_{\mathrm{P}} r_{\mathrm{M}}
$$

Thus, the residual variance is given by

$$
\begin{align*}
w_{\mathrm{P}}^{2} & =\operatorname{Var}\left[r_{\mathrm{P}}-\beta_{\mathrm{P}} r_{\mathrm{M}}\right] \\
& \left.=\operatorname{Var}\left[\left(b_{\mathrm{P}}-\beta_{\mathrm{P}}\right) f+\sum\left(h_{\mathrm{P} j}-\beta_{\mathrm{P}} h_{\mathrm{M} j}\right) u_{j}\right)\right] \\
& =\left(b_{\mathrm{P}}-\beta_{\mathrm{P}}\right)^{2} \operatorname{Var}[f]+\sum\left(h_{\mathrm{P} j}-\beta_{\mathrm{P}} h_{\mathrm{M} j}\right)^{2} \sigma_{j}^{2} \tag{6.14}
\end{align*}
$$

since the nonfactor return, u_{j}, is uncorrelated with the factor return. Now, using the 353 approximation that $\beta_{\mathrm{P}}=b_{\mathrm{P}}$, it follows that

$$
\begin{equation*}
w_{\mathrm{P}}^{2} \cong \sum\left(h_{\mathrm{P} j}-\beta_{\mathrm{P}} h_{\mathrm{M} j}\right)^{2} \sigma_{j}^{2}=\sum \delta_{\mathrm{P} j}^{2} \sigma_{j}^{2} \tag{6.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Var}[r j]=\sum_{k=1}^{K} \sum_{l=1}^{K} b_{j k} b_{j l} \operatorname{Cov}\left[f_{k}, f_{l}\right]+\sigma_{j}^{2} \tag{6.16}
\end{equation*}
$$

where $\operatorname{Cov}\left[f_{k}, f_{l}\right]$ is the covariance between the factors and equals $\operatorname{Var}\left[f_{l}\right]$ if $k=l$. This multiple factor model is specified by the security factor loadings, $b_{j k}$, and the factors, f_{k}.

If we now form a portfolio, P , with weights $h_{\mathrm{P} 1}, h_{\mathrm{P} 2}, \ldots, h_{\mathrm{PN}}$, from N stocks, then the random excess return is given by

$$
\begin{align*}
r_{\mathrm{P}} & =\sum_{j=1}^{N} h_{\mathrm{P} j} r_{j}=\sum_{j=1}^{N} h_{\mathrm{P} j} \sum_{k=1}^{K} b_{j k} f_{k}+\sum_{j=1}^{N} h_{\mathrm{P} j} u_{j} \\
& =\sum_{k=1}^{K} \sum_{j=1}^{N} h_{\mathrm{P} j} b_{j k} f_{k}+\sum_{j=1}^{N} h_{\mathrm{P} j} u_{j} \\
& =\sum_{k=1}^{K} b_{\mathrm{P} k} f_{k}+\sum_{j=1}^{N} h_{\mathrm{P} j} u_{j} \tag{6.17}
\end{align*}
$$

371 where we have written $b_{\mathrm{P} k}=\sum h_{\mathrm{P} j} b_{j k}$ as the portfolio loading onto the k th factor.
372 Since the market portfolio is a portfolio, the random excess return on the market is 373 given by (6.16), with M replacing P ; i.e.,

$$
r_{\mathrm{M}}=\sum_{k=1}^{K} b_{\mathrm{M} k} f_{k}+\sum_{j=1}^{N} h_{\mathrm{M} j} u_{j}
$$

Proceeding as before, the beta of the j th asset is given by

$$
\begin{align*}
\beta_{j} & =\operatorname{Cov}\left[r_{j}, r_{m}\right] / \operatorname{Var}\left[r_{\mathrm{M}}\right] \\
& =\left(\sum_{k=1}^{K} \sum_{l=1}^{K} b_{j k} b_{\mathrm{M} l} \operatorname{Cov}\left[f_{k}, f_{l}\right]+b_{\mathrm{M} j} \sigma_{j}^{2}\right) / \operatorname{Var}\left[r_{\mathrm{M}}\right] \tag{6.18}
\end{align*}
$$

It would appear that this complex expression is devoid of meaning; however, this 375 is not the case. Consider the betas of the factors. In particular, for factor k

$$
\begin{aligned}
\beta_{f k} & =\operatorname{Cov}\left[f_{k}, r_{\mathrm{M}}\right] / \operatorname{Var}\left[r_{\mathrm{M}}\right] \\
& =\sum_{l=1}^{K} b_{\mathrm{M} l} \operatorname{Cov}\left[f_{k}, f_{l}\right] / \operatorname{Var}\left[r_{\mathrm{M}}\right]
\end{aligned}
$$

and the beta of the specific component of return on the j th asset

$$
\begin{aligned}
\beta_{u j} & =\operatorname{Cov}\left[u_{j}, r_{\mathrm{M}}\right] / \operatorname{Var}\left[r_{\mathrm{M}}\right] \\
& =h_{\mathrm{M}} j \sigma_{j}^{2} / \operatorname{Var}\left[r_{\mathrm{M}}\right]
\end{aligned}
$$

That is, in the multiple factor model the security beta is a weighted average of 378 the factor betas and the beta of the specific return of the security, where the weights 379 are simply the factor loadings for the j th security. Notice that the beta of the stock's 380 specific return is nonzero only because the security return is a component of the 381 market return since the security is a part of the market. The intuition with which we 382 wish to leave readers is that, far from being the primitive parameter in finance, the 383 stock beta should be regarded as an average of a stock's exposures to a large 384 number of factors influencing its return.

Now the residual return, the return due to a nonmarket strategy, on portfolio P is 386 $r_{\mathrm{P}}-\beta_{\mathrm{P}} r_{\mathrm{M}}$. Hence, the portfolio residual variance, w_{P}^{2}, is given by

$$
\begin{align*}
w_{\mathrm{P}}^{2} & =\operatorname{Var}\left[r_{\mathrm{P}}-\beta_{\mathrm{P}} r_{\mathrm{M}}\right] \\
& =\operatorname{Var}\left[\left\{\sum_{k=1}^{K}\left(b_{\mathrm{P} k}-\beta_{\mathrm{P}} b_{\mathrm{M} k}\right) f_{k}\right\}+\left\{\sum_{j=1}^{N}\left(h_{\mathrm{P} j}-\beta_{\mathrm{P}} h_{\mathrm{M} j}\right) u_{j}\right\}\right] \\
& =\operatorname{Var}\left[\sum_{k=1}^{K}\left(\gamma_{\mathrm{P} k} f_{k}\right)\right]+\operatorname{Var}\left[\sum_{j=1}^{N} \delta_{\mathrm{P} j} u_{j}\right], \tag{6.19}
\end{align*}
$$

where γ is the Greek letter gamma and $\gamma_{\mathrm{P} k}=b_{\mathrm{P} k}-\beta_{\mathrm{P}} b_{\mathrm{M} k}$ is the discrepancy in the 388 portfolio factor loading and the equal-beta-levered market portfolio factor loading; 389 $\delta_{\mathrm{P} j}$ is the discrepancy in the holdings, defined below (6.20), and the last step follows 390 because the specific returns are uncorrelated with the factors.

Let the model for beta be given by

$$
\begin{equation*}
\beta_{n t}=b_{0}+b_{1} d_{1 n t}+b_{2} d_{2 n t}+\ldots+b_{J} d_{J n t} \tag{6.20}
\end{equation*}
$$

393 for all time periods t and securities n, where the b 's are coefficients for the 394 systematic risk prediction rule and the d 's are the J descriptor values for the nth 395 company at time t. Further, let $E\left[\varepsilon_{n t}\right]=0$ and $\operatorname{Cov}\left[\varepsilon_{n t}, r_{\mathrm{M} t}\right]=0$ for all t, and define $396 w_{n t}^{2}$ to be the residual variance, i.e., $w_{n t}^{2}=\operatorname{Var}\left[\varepsilon_{n t}\right]$. The model for residual risk is 397 given by

$$
\begin{equation*}
w_{n t}=\bar{w}_{t}\left(s_{0}+s_{1} d_{1 n t}+s_{2} d_{2 n t}+\ldots+s_{J} d_{J n t}\right) \tag{6.21}
\end{equation*}
$$

398

Therefore, $v_{n t}=E\left(\mid \varepsilon_{n t}\right)$ and

$$
\begin{equation*}
v_{n t}=\bar{v}_{t}\left(s_{0}+s_{1} d_{1 n t}+s_{2} d_{2 n t}+\ldots+s_{J} d_{J n t}\right) \tag{6.22}
\end{equation*}
$$

The estimate approach proceeds by substituting the beta prediction rule, (6.24), and then performing a "market conditional" regression for beta. The dependent variable is $r_{n t}$, and the independent variables are $d_{j n t} r_{\mathrm{M} t}$, so the model is

$$
r_{n t}=\alpha+b_{0}\left(r_{\mathrm{M} t}\right)+b_{1}\left(d_{l n t} r_{\mathrm{M} T}\right)+\ldots+b_{J}\left(d_{J n t} r_{\mathrm{M} t}\right)
$$

405 which provides preliminary estimates, $\hat{b}_{0}, \ldots, \hat{b}_{j}$. With these coefficients, the 406 preliminary prediction of residual return is

$$
\begin{equation*}
\hat{\varepsilon}_{n t}=r_{n t}-\left(\hat{b}_{0}+\hat{b}_{1} d_{1 n t}+\ldots+\hat{b}_{J} d_{J n t}\right) r_{\mathrm{M} t} . \tag{6.23}
\end{equation*}
$$

The next regression is fitted to estimate residual risk. It takes the form

$$
\left|\hat{\varepsilon}_{n t}\right|=s_{0}\left(\hat{v}_{t}\right)+s_{1}\left(d_{1 n t} \hat{v}_{t}\right)+\ldots+s_{J}\left(d_{J n t} \hat{v}_{t}\right)
$$

where

$$
\bar{v}_{t}=\sum_{n=1}^{N} h_{\mathrm{M} n t}\left|\hat{\delta}_{n t}\right|,
$$

and $h_{\mathrm{M} n t}$ is the proportion of security n in the market portfolio at time t. This regression provides estimates, $\hat{s}_{0}, \ldots, \hat{s}_{J}$.

The final step in this part of the analysis is to obtain prediction of systematic and esidual risk by repeating these two regressions, but now using generalized least squares in order to correct for the different levels of residual risk across the
securities. ${ }^{9}$ The next task is to decompose the residual return into two components: 414 specific return and the common factor return. This is achieved by a cross-sectional 415 generalized least squares regression where the dependent variable is the residual 416 return in month, $t, r_{n t}-\hat{\beta}_{n t} r_{\mathrm{M} t}$, and the independent variables are the risk indices 417 and industry dummy variables. In this regression, each variable is weighted 418 inversely to the predicted residual risk. 419

The statistically significant determinants of the security systematic risk became 420 the basis of the BARRA E1 Model risk indexes. The domestic BARRA E3 (USE3, 421 or sometimes denoted US-E3) model, with some 15 years of research and evolution, 422 uses 13 sources of factor, or systematic, exposures. The sources of extra-market 423 factor exposures are volatility, momentum, size, size nonlinearity, trading activity, 424 growth, earnings yield, value, earnings variation, leverage, currency sensitivity, 425 dividend yield, and non-estimation universe. The BARRA USE3 descriptors 426 are included in the appendix to this chapter. We use the Barra USE3 Model to 427 create portfolios using expected returns for equities in the United States for the 428 1980-2009 period.

Rudd and Clasing (1982) described the development and estimation of USE1. 430 AU15 The MSCI Barra Model used in this chapter is the USE3 Model. The method of 431 combining these descriptors into risk indices is proprietary to BARRA. There are 432 13 risk indexes or style factors in the USE3 Model. They are the following: 433

1. Volatility is composed of variables including the historic beta, the daily 434 standard deviation, the logarithm of the stock price, the range of the stock 435 return relative to the risk-free rate, the option pricing model standard deviation, 436 and the serial dependence of market model residuals. 437
2. Momentum is composed of a cumulative 12 -month relative strength variable 438 and the historic alpha from the 60 -month regression of the security excess 439 return on the S\&P 500 excess return.
3. Size is the \log of the security market capitalization. 441
4. Size Nonlinearity is the cube of the \log of the security market capitalization. ${ }^{442}$
5. Trading Activity is composed of annualized share turnover of the past 5 years, 443 12 months, quarter, and month, and the ratio of share turnover to security 444 residual variance. 445
6. Growth is composed of the growth in total assets, 5 -year growth in earnings per 446 share, recent earnings growth, dividend payout ratio, change in financial 447 leverage, and analyst-predicted earnings growth. 448
7. Earnings Yield is composed of consensus analyst-predicted earnings to price 449 and the historic earnings-to-price ratios.
8. Value is measured by the book-to-price ratio. 451

[^32]\[

$$
\begin{align*}
\mathrm{TR}_{t+1}= & a_{0}+a_{1} \mathrm{EP}_{t}+a_{2} \mathrm{BP}_{t}+a_{3} \mathrm{CP}_{t}+a_{4} \mathrm{SP}_{t}+a_{5} \mathrm{REP}_{t}+a_{6} \mathrm{RBP}_{t} \\
& +a_{7} \mathrm{RCP}_{t}+a_{8} \mathrm{RSP}_{t}+a_{9} \mathrm{CTEF}_{t}+a_{10} \mathrm{PM}_{t}+e_{t} \tag{6.24}
\end{align*}
$$
\]

where $\mathrm{EP}=$ [earnings per share] $/[$ price per share $]=$ earnings-price ratio; $\mathrm{BP}=$ [book value per share]/[price per share] $=$ book-price ratio; $\mathrm{CP}=$ [cash flow per share $] /[$ price per share $]=$ cash flow-price ratio; $\mathrm{SP}=[$ net sales per share $] /[$ price per share $]=$ sales-price ratio; $\mathrm{REP}=[$ current EP ratio $] /[$ average EP ratio over the

[^33]past 5 years]; $\mathrm{RBP}=$ [current BP ratio]/[average BP ratio over the past 5 years]; 481 $\mathrm{RCP}=$ [current CP ratio]/[average CP ratio over the past 5 years]; $\mathrm{RSP}=$ [current 482 SP ratio]/[average SP ratio over the past 5 years]; CTEF, consensus earnings-per-share 483 I/B/E/S forecast, revisions and breadth; PM, Price Momentum; and e, randomly 484 distributed error term. 485

The USER model is estimated cross-sectionally using a weighted latent root 486 regression, WLRR, analysis on (6.24) to identify variables statistically significant at 487 the 10% level; uses the normalized coefficients as weights; and averages the 488 variable weights over the past 12 months, as described in Chap. 4.489

The information coefficient, IC, is estimated as the slope of a regression line in 490 which ranked subsequent returns are expressed as a function of the ranked strategy, 491 at a particular point of time. In terms of information coefficients the use of the 492 WLRR procedure produces the higher IC for the models during the 1998-2007 493 time period, 0.043, versus the equally weighted IC of 0.040, a result consistent with 494 the previously noted studies. The IC test of statistical significance can be referred to 495 as a Level I test. We have briefly surveyed the academic literature on anomalies and 496 find substantial evidence that valuation, earnings expectations, and price momen- 497 tum variables are significantly associated with security returns. Further evidence on 498 the anomalies is found in Levy (1999). ${ }^{11}$

[^34]- Residual Return is last month's residual stock return unexplained by the market.
- Cash Flow-to-Price is the12-month trailing cash flow per share divided by the current price.
- Earnings-to-Price is the $12-$ month trailing earnings per share divided by the current price.
- Return on Assets is the12-month trailing total income divided by the most recently reported total assets.
- Residual Risk is the trailing variance of residual stock return unexplained by market return.
- 12-month Return is the total return for the stock over the trailing twelve months.
- Return on Equity is the12-month trailing earnings per share divided by the most recently reported book equity.
- Volatility is the 24-month trailing volatility of total stock return.
- Book-to-Price is the most recently reported book value of equity divided by the current market price.
- Profit Margin is 12 -month trailing earnings before interest divided by 12-month trailing sales.
- Three-month return is the total return for the stock over the trailing 3 months.
- Sales-to-Price is 12 -month trailing sales per share divided by the market price.

The four measures of cheapness in the USER model: cash-to-price, earnings-to-price, book-toprice, and sales-to-price, all have significant positive payoffs. Haugen and Baker (2010) find statistically significant results for the four fundamental factors as did the previously studies we reviewed. The Haugen and Baker (2010) analysis and results are consistent with those of the Bloch et al. (1993) model.

500

Efficient Portfolio Construction Using the Barra Aegis System

The USER model can be input into the MSCI Barra Aegis system to create optimized portfolios. The equity factor returns f_{k} in the Barra United States Equity Risk Model, denoted USE3, are estimated by regressing the local excess returns r_{n} against the factor exposures, $X_{n k}$,

$$
\begin{equation*}
r_{n}=\sum_{k=1}^{K_{E}} X_{n k} f_{k}+u_{n} \tag{6.25}
\end{equation*}
$$ described in Grinold and Kahn (2000):

$$
\begin{equation*}
U=\alpha h-\lambda \omega^{2} h^{2} \tag{6.26}
\end{equation*}
$$

511 H 512

513

The USE3 model uses monthly cross-sectional weighted regressions to estimate 13 (style) factors associated with extra-market covariances discussed earlier in the chapter. The USER model is our approximation of the expected return, or the forecast of active return, α, of the portfolio. Researchers in industry most often apply the Markowitz (1952) mean/variance framework to active management, as

Here α is the forecast of active return (relative to a benchmark which can be cash), ω is the active risk, and h is the active holding (the holding relative to the benchmark holding). The risk aversion parameter, λ, captures individual investor preference. By varying the tolerance or risk-aversion, λ, one can create the efficient Frontier in the Barra model. A similar procedure is used in Bloch et al. (1993). They created efficient portfolios by varying the pick parameter m which measured the risk-aversion. Grinhold and Kahn (2000) use the Information Ratio, IR, as a portfolio construction objective to be maximized, which measures the ratio of residual return to residual risk:

$$
\begin{equation*}
\mathrm{IR} \equiv \frac{\alpha}{\omega} \tag{6.27}
\end{equation*}
$$

We construct an Efficient Frontier by varying the risk-aversion levels. The portfolio construction process uses 8% monthly turnover, after the initial portfolio is created, and 125 basis points of transaction costs each way. The USER-optimized portfolios outperform the market, defined here as the Russell 3000 Growth, R3G. The portfolio that maximizes the Geometric Mean (Markowitz 1976) and asset selection occurs at a risk-aversion level of 0.02 . The Sharpe Ratio also is maximized at a risk acceptance parameter, RAP, of 0.02 with 109 stocks in the 527 efficient portfolio. ${ }^{12}$ A decreasing RAP implies that the more aggressive portfolios

[^35]have a greater negative size exposure and implies that the portfolios contain smaller 528 capitalized securities. A decreasing risk-aversion level produces a more concentrated 529 portfolio, having fewer securities than a higher RAP portfolio, with the securities 530 having smaller market capitalizations and higher exposures to momentum and 531 growth. The efficient Frontier uses the Barra USE3 Short Model. 532

The efficient USER portfolio at a risk-aversion level of 0.02 offers exposure to 533 MSCI Barra-estimated momentum, value, and growth exposures, see Table 6.2. 534 The reader is hardly surprised with these exposures, given the academic literature 535 and stock selection criteria and portfolio construction methodology employed. 536

The Guerard et al. (2012) USER analysis used the R3G benchmark, which began 537 in December 1996. In this analysis, we can create a USER trade-off curve that 538 covers the December 1979-December 2009 period by using the S\&P as our 539 benchmark. We find that the portfolio characteristics of the longer period analysis, 540 1980-2009, are very consistent with the portfolio characteristics of the 1997-2009 541 period, see Table 6.3. We find that an RAP of 0.001 is preferred for the 1980-2009 542 period.

The asset selection of the USER model is highly statistically significant and the 544 risk index exposures are consistent with the shorter period. ${ }^{13}$ The USER Efficient 545 Frontier for the 1980-2009 period uses the Barra USE3L (United States Equity 546 Risk Model-Long) Risk Model. This chart shows the Frontier, reported in Miller 547 et al. (2012).

[^36]Table 6.2 USER efficient Frontier portfolio characteristics, 1996-2009

Benchmark: Russell 3000 Growth (R3G)																				
Transaction costs: 125 basis points each way																				
Risk acceptance parameter			0.015				0.020				0.050				0.100				$\underline{0.200}$	
Portfolio	Mean	Return	IR	t	X	r	IR	t												
Average number of assets	102				109				139				171				220			
Risk indices		2.11	0.31	1.12		1.96	0.31	1.11		1.53	0.30	1.09		1.31	0.33	1.19		1.03	0.33	1.21
Industries		-0.84	-0.24	-0.85		-0.77	-0.23	-0.82		-0.74	-0.28	-1.00		-0.20	-0.11	-0.39		0.10	0.04	0.16
Asset selection		2.26	0.46	1.68		2.61	0.53	1.92		2.52	0.58	2.08		2.06	0.55	1.97		2.51	0.73	2.65
Transaction cost		-2.61				-2.62				-2.59				-2.58				-2.58		
Total active		0.91	0.16	0.58		1.18	0.19	0.70		0.73	0.16	0.56		0.59	0.15	0.55		1.06	0.26	0.95
Total managed		4.09				4.36				3.91				3.77				4.24		
Currency sensitivity	0.04	0.01	0.03	0.11	0.03	0.02	0.10	0.35	0.02	-0.01	-0.01	-0.02	0.00	0.00	0.02	0.06	-0.01	0.01	0.05	0.19
Earnings variation	0.39	-0.33	-0.33	-1.18	0.36	-0.31	-0.33	-1.20	0.26	-0.16	-0.24	-0.86	0.19	-0.07	-0.13	-0.46	0.13	-0.01	-0.03	-0.10
Earnings yield	0.14	0.37	0.60	2.17	0.14	0.37	0.61	2.22	0.13	0.40	0.73	2.63	0.12	0.37	0.72	2.60	0.10	0.33	0.76	2.74
Growth	0.10	-0.14	-0.44	-1.61	0.10	-0.16	-0.52	-1.88	0.11	-0.16	-0.49	-1.78	0.10	-0.12	-0.36	-1.31	0.07	-0.07	-0.27	-0.97
Leverage	0.42	-0.03	-0.03	-0.12	0.40	-0.02	-0.03	-0.09	0.30	-0.02	-0.04	-0.14	0.22	0.01	-0.01	-0.02	0.15	0.01	-0.01	-0.04
Momentum	0.30	-0.58	-0.27	-0.96	0.29	-0.56	-0.27	-0.96	0.24	-0.52	-0.30	-1.08	0.20	-0.41	-0.28	-1.01	0.17	-0.30	-0.25	-0.90
Non-EST universe	0.44	-0.44	-0.14	-0.50	0.42	-0.42	-0.14	-0.50	0.32	-0.30	-0.13	-0.46	0.25	-0.22	-0.12	-0.43	0.18	-0.17	-0.12	-0.43
Size	-1.02	2.59	0.58	2.10	-0.94	2.42	0.58	2.11	-0.69	1.83	0.58	2.08	-0.52	1.34	0.55	2.00	-0.38	0.94	0.52	1.89
Size nonlinearity	-0.32	-0.02	-0.03	-0.10	-0.29	-0.01	-0.02	-0.08	-0.20	-0.02	-0.03	-0.12	-0.15	-0.02	-0.03	-0.12	-0.11	0.00	-0.01	-0.02
Trading activity	-0.64	0.70	0.25	0.91	-0.58	0.65	0.26	0.93	-0.42	0.47	0.25	0.92	-0.31	0.36	0.26	0.94	-0.22	0.26	0.26	0.94
Value	0.38	-0.18	-0.19	-0.67	0.36	-0.19	-0.21	-0.74	0.29	-0.12	-0.15	-0.55	0.25	-0.08	-0.13	-0.48	0.20	-0.08	-0.15	-0.53
Volatility	0.23	0.32	0.23	0.84	0.20	0.30	0.24	0.85	0.13	0.20	0.23	0.83	0.09	0.17	0.26	0.92	0.06	0.15	0.28	1.02
Yield	0.17	-0.15	-0.41	-1.49	0.16	-0.13	-0.39	-1.41	0.11	-0.05	-0.22	-0.79	0.09	-0.03	-0.15	-0.55	0.07	-0.03	-0.18	-0.65

Table 6.3 USER efficient Frontier portfolio characteristics, 1980-2009

The creation of portfolios with a multifactor model and the generation of excess returns will hereby be referred to as a Level II test of portfolio construction. ${ }^{14}$

One could ask if the USER model resulted from a seemingly infinite number of variable tests and permutations. The USER was developed by the author in 1989 while at Drexel, Burnham, and Lambert in a consulting project for Continental Bank. Guerard and Miller (1991) presented the initial model and the portfolio excess returns at the Berkeley Program in Finance meeting in Santa Barbara, in September 1990. Guerard worked for Harry Markowitz in the Global Portfolio Research Department, GPRD, at the Daiwa Securities Trust Company. The Continental Bank model was validated and expanded to test its use of 5-year relative variables and four-quarter variable weights lags. The Continental Bank model was validated in Bloch et al. (1993). Markowitz asked if the model could have been "in favor" or "unusually lucky" in its creation and initial implementation. Markowitz and Xu (1994)'s Data Mining Corrections (DMC) proposed three models to evaluate the outperformance of the best investment methodology when all of the back test data are available. It is human nature to be skeptical and wonder whether the best outperformance methodology is the result of "Data Mining." It has been applied routinely in the quantitative researches, for example, Bloch et al. (1993) and Guerard et al. (2010). This chapter follows previous papers doing the Data Mining Correction calculations with the longer data. We refer to the application of the Markowitz and Xu (1993) DMC test as a Level III test.

Fundamental factors like dividend-to-price (DP), earnings-to-price (EP) include forecast earnings-to-prices (FEP1, FEP2), book-to-price (BP), cash-to-price ratio (CP), sales-to-price ratio (SP), and none fundamental factors like size (EWC), price momentums (PM71, PM, MQ) and financial analyst forecast earnings revisions (BR1, BR2, RV1, RV2) are not only used in risk modeling, e.g., Rosenberg (1974), but also used in stock selection models. Some researchers combine some simple factors into a composite factor to enhance forecast power like USER and CTEF reported here. With the various expected return forecast model and risk model, researchers can pick a target portfolio from efficient Frontier according to preset investors' objectives. The excess returns of the portfolios created by the individual variables are denoted by model i. Here is the summary table, Table 6.4, of target portfolios generated by Barra Aegis optimization and portfolio management system, based on the previously discussed expected return "models," with the same risk trade-off parameter and the same trading cost.

The Markowitz and Xu (1994) DMC models assume that the T period backtest returns were identically and independently distributed (i.i.d.), and it is assumed that future returns are drawn from the same population (also i.i.d.). Let $y_{i t}$ be the logarithm of one plus the return for the i th portfolio selection methodology in period t. Then $y_{i t}$ is of the form

[^37]Table 6.4 US simulated returns: Jan 1980-Dec 2009

Portfolios	Monthly excess return to S\&P 500 in percent	t-Statics
USER	0.28	1.72
BR1	0.16	1.29
BR2	0.13	1.12
RV1	0.22	1.48
RV2	0.04	0.32
FEP1	0.02	0.09
FEP2	0.19	-0.87
CTEF	0.27	2.40
EP	0.09	0.50
BP	0.07	0.33
CP	0.16	0.90
SP	0.34	1.81
DP	0.22	1.21
PM71	0.16	0.84
PM	0.16	0.70
EWC	0.14	0.80
MQ	0.39	2.44

$$
\begin{equation*}
y_{t i}=\mu_{i}+\varepsilon_{i t} \tag{6.28}
\end{equation*}
$$

where μ_{i} is a portfolio selection method effect and $\varepsilon_{i t}$ is a random deviation. 589
The random deviation $\varepsilon_{i t}$ has a zero mean and is uncorrelated with μ_{i}, i.e., 590

$$
\begin{gather*}
E\left(\varepsilon_{i t}\right)=0 \tag{6.29}\\
\operatorname{cov}\left(\mu_{i}, \varepsilon_{j t}\right)=0 \text { for all } i, j \text { and } t \tag{6.30}
\end{gather*}
$$

The "best" linear unbiased estimate of the expected portfolio selection return 591 vector μ is

$$
\begin{equation*}
\hat{\mu}=E(\mu) e+\operatorname{Var}(\mu)\left[\frac{1}{T} C+\operatorname{Var}(\mu) I\right]^{-1} \times(\tilde{y}-E(\mu) e), \tag{6.31}
\end{equation*}
$$

where C is the covariance matrix of random effect, i.e.,

$$
\begin{equation*}
C=\operatorname{cov}\left(\varepsilon_{e}, \varepsilon_{j}\right) \tag{6.32}
\end{equation*}
$$

Markowitz and Xu (1994) refer to this as DMC Model III.
If one assumes that random effect is of form 595

$$
\begin{equation*}
\varepsilon_{i t}=z_{t}+\eta_{i t} \tag{6.33}
\end{equation*}
$$

where Z_{t} is the period effect it is assumed to be uncorrelated with random effect $\eta .596$
where

$$
\begin{equation*}
\bar{r}=\sum_{i=1}^{T} r_{i} / n \tag{6.35}
\end{equation*}
$$

That is the best estimate of means of return of portfolio selection i is not sample mean return, rather it is regressed back to the average return (the grand average). Markowitz and Xu (1994) refer to this as the DMC Model II and is the focus of their paper.

Model II can be used to test the null hypothesis that all these portfolios selected by different methods are equally good. If this hypothesis can be rejected, (6.35) gives the best estimate for each selected portfolio. In the above portfolios, the null hypothesis can be rejected with more than 90% confidence because the F-statistic equals 1.5 and β is estimated to be 0.33 . Readers are referred to the original paper for detailed calculations.

DMC Model III Calculation

610
Instead of assuming that μ_{i} are random, Rao (1973) derived a formula for testing the AU21

$$
\begin{equation*}
F=\frac{T-n+1}{n-1} \times \frac{T}{T-1} \times\left(\sum c^{i j} \times \bar{r}_{i} \bar{r}_{j}-\frac{\left[\sum \sum c^{i j}\left(\bar{r}_{i}+\bar{r}_{j}\right)\right]^{2}}{4 \sum \sum c^{i j}}\right) \tag{6.36}
\end{equation*}
$$

613 where $\left(c^{i j}\right)$ is the inverse matrix of the C, the sample (estimated with T-1 D.F.) 614 dispersion matrix as defined in (6.32)
615 When applying formula (6.36) to above portfolios, $F=1.9$. Thus, we can reject 616 the hypothesis with 95% confidence. The Bayesian estimate of means are the 617 following:

618	Portfolio	$\bar{r}_{i}-\bar{r}$	Bayesian estimate of $\bar{r}_{i}-\bar{r}$	Estimate-to-actual ratio
	S\&P500	-0.09	-0.08	0.96
620	USER	0.14	0.12	0.86
621	BR1	0.06	0.05	0.84
622	BR2	0.03	0.02	0.59
623	RV1	0.07	0.09	1.18
624	RV2	-0.10	-0.08	0.82

Portfolio	$\bar{r}_{i}-\bar{r}$	Bayesian estimate of $\bar{r}_{i}-\bar{r}$	Estimate-to-actual ratio	
FEP1	-0.15	-0.09	0.59	626
FEP2	-0.40	-0.32	0.79	628
CTEF	0.16	0.16	0.95	629
EP	-0.05	-0.05	1.05	630
BP	-0.10	-0.10	1.01	631
CP	0.02	0.02	0.82	632
SP	0.18	0.17	0.94	633
DP	0.09	0.09	0.96	634
PM71	-0.02	-0.03	1.26	635
PM71	-0.08	-0.09	1.16	636
EWC	0.00	-0.01	1.30	637
MQ	0.24	0.21	0.91	638

DMC provides some statistical answers to the impossible question whether an 639 investment selection result is "lucky" or genuinely better. The DMC model III test 640 produces a higher test statistic than DMC model II. The Bayesian's estimates are 641 much closer to the simple sample estimates which ignore the other investment's 642 influence. DMC model II is simpler and more plausible. 643

Conclusions

In this case study, we demonstrated the effectiveness of the Barra Aegis system to 645 create investment management strategies to produce portfolios and attribute port- 646 folio returns to the Barra multifactor risk model during the December 647 1979-December 2009 period. We find additional evidence to support the use of 648 MSCI Bara multifactor models for portfolio construction and risk control. We 649 report two results: (1) a composite model incorporating fundamental data, such as 650 earnings, book value, cash flow, and sales, with analysts' earnings forecast 651 revisions and price momentum variables to identify mispriced securities; (2) the 652 returns to a multifactor risk-controlled portfolio allow us to reject the null hypothe- 653 sis that results are due to data mining. We develop and estimate three levels of 654 testing for stock selection and portfolio construction. The use of multifactor risk- 655 controlled portfolio returns allows us to reject the null hypothesis that the results are 656 due to data mining. The anomalies literature can be applied in real-world portfolio 657 construction.

References

Blin, J.M. S. Bender, and J. B.Guerard, Jr. 1997. "Earnings Forecasts, Revisions and Momentum in the Estimation of Efficient Market-Neutral Japanese and U.S. Portfolios." In Research in Finance 15, edited by A. Chen.
Bloch, M., J.B. Guerard, Jr, H. M. Markowitz, P. Todd, and G-L. Xu. 1993. "A Comparison of Some Aspects of the U.S. and Japanese Equity Markets." Japan \& the World Economy 5, 3-26.
Chen, N-F., R. Roll, and S. Ross. 1986. "Economic Forces and the Stock Market." Journal of Business 59, 383-403.
Elton, E.J., M.J. Gruber, S.J. Brown, and W.N. Goetzmann. 2007. Modern Portfolio Theory and Investment Analysis, New York: Wiley, $7^{\text {th }}$ Edition.
Elton, E. J., M.J. Gruber, and M. Gultekin. 1981. "Expectations and Share Prices." Management Science 27, 975-987.
Grinhold, R and R. Kahn. 2000. Active Portfolio Management New York: McGraw-Hill/Irwin, Second edition.
Graham, B., D. Dodd, and S. Cottle. 1934, 1962. Security Analysis: Principles and Technique. New York: McGraw-Hill Book Company. Editions one and four.
Guerard, J.B., Jr., Xu, G-L, and Gultekin, M. 2012. "Investing with Momentum: The Past, Present, and Future", Journal of Investing 21, 68-80.
Guerard, J.B., Jr., S. C. Chettiappan, and G-L, Xu. 2010. "Stock-Selection Modeling and Data Mining Corrections: Long-Only versus 130/30 Models". In J.B. Guerard, Ed. The Handbook of Portfolio Construction: Contemporary Applications of Markowitz Techniques. New York: Springer.
Guerard, J.B., Jr. and M. Takano. 1991. "The Development of Mean-Variance Portfolios in Japan and the U.S.". Journal of Investing 1.
Guerard, J.B., Jr. 1990. "Optimal Portfolio Analysis using Composite Model-Tilting". Drexel Burnham, Lambert. Unpublished working paper.
Haugen, R. and N. Baker. 2010. "Case Closed", in J.B. Guerard, Ed. The Handbook of Portfolio Construction: Contemporary Applications of Markowitz Techniques. New York: Springer.
Levy, H. 1999. An Introduction to Investments. Cincinnati: South-Western Publishing Company.
Liu, Y., J. Menchero, D.J. Orr, and J. Wang. 2011. The Barra US Equity Model (USE4) Empirical Notes.
Markowitz, H.M. 1952. "Portfolio Selection." Journal of Finance 7, 77-91.
Markowitz, H.M. 1959. Portfolio Selection: Efficient Diversification of Investment. Cowles Foundation Monograph No.16. New York, John Wiley \& Sons.
Markowitz, H.M. and G.L. Xu. 1994. "Data Mining Corrections", Journal of Portfolio Management. Fall.
Menchero, J. and D.J. Orr. 2012. "Improving Risk Forecasts for Optimized Portfolios". Financial Analysts Journal 68, 40-50.
Menchero, J., A. Morozov, and P.Shepard. 2010. "Global Equity Risk Modeling", in J.B. Guerard, Ed. The Handbook of Portfolio Construction: Contemporary Applications of Markowitz Techniques. New York: Springer.
Miller, D., G. Xu, and Guerard, J.B. 2012. "Portfolio Construction and Management in the Barra Aegis System: A Case Study using the USER Data", Working Paper.
Miller, J.D. and J.B. Guerard, Jr. 1991. "Bridging the Gap Between Theory and Practice in Equity Selection Modeling'. Presented at The Berkeley Program in Finance, Santa Barbara, CA.
Mossin, J. 1966. "Equilibrium in a Capital Asset Market." Econometrica 34, 768-783.
Mossin, J. 1973. Theory of Financial Markets. Englewood Cliffs, NJ: Prentice-Hall, Inc.
Nerlove, M. 1968. "Factors Affecting Differences Among Rates of Return on Investments in Individual Common Stocks", Review of Economics and Statistics 50, 312-331.
Rudd, A. and H. K. Clasing, Jr. 1982. Modern Portfolio Theory. New York; Dow-Jones/ Irwin.
Rudd, A, and B. Rosenberg. 1979. "Realistic Portfolio Optimization." In E. Elton and M. Gruber, Eds. Portfolio Theory, 25 Years After. Amsterdam: North-Holland.
Rudd, A. and B. Rosenberg. 1980. "The 'Market Model' in Investment Management." Journal of Finance 35, 597-607.

Rosenberg, B. and W. McKibben.1973. "The Prediction of Systematic and Unsystematic Risk in 717 Common Stocks", Journal of Financial and Quantitative Analysis, 8, 317-333. 718
Rosenberg, B. 1974. "Extra-Market Components of Covariance in Security Returns." Journal of 719 Financial and Quantitative Analysis 9, 263-274. 720
Rosenberg, B., M. Hoaglet, V. Marathe and W. McKibben. 1975. "Components of Covariance in 721 Security Returns." Working paper no. 13, Research Program in Finance. Institute of Business 722 and Economic Research. University of California. Berkeley. 723
Rosengerg, B. and V. Marathe. 1976. "Common Factors in Security Returns: Microeconomic 724 Determinants and Macroeconomic Correlates", Working paper no. 44, Research Program in 725 Finance. Institute of Business and Economic Research. University of California. Berkeley. 726
Rosenberg, B. and V. Marathe, 1979. "Tests of Capital Asset Pricing Hypotheses." In H. Levy, Ed., 727 Research in Finance 1, 115-223.
Sharpe, W.F. 1963. "A Simplified Model for Portfolio Analysis." Management Science 9, 729 277-293. 730
Sharpe, W .F .1971. "A Linear Programming Approximation for the General Portfolio Analysis 731 Problem." Journal of Financial and Quantitative Analysis 6.

732
Ramnath, S., S. Rock, and P. Shane. 2008. "The Financial Analyst Forecasting Literature: A 733 Taxonomy with Suggestions for Further Research. International Journal of Forecasting 24, 734 34-75.
Rao, CR. Linear statistical Inference and Its Applications. New York: John Wiley \& Sons, 1973, 736 $2^{\text {nd }}$ edition
Stone, B.K. 1970. Risk, Return, and Equilibrium: A General Single-Period Theory of Asset 738 Selection and Capital Market Equilibrium. Cambridge, MA: MIT Press.
Stone, B. K. 1973. "A Linear Programming Formulation of the General Portfolio Selection 740 Problem." Journal of Financial and Quantitative Analysis, 8, 621-636. 741
Stone, B. K. and J.B. Guerard, Jr. 2010a. Methodologies for Isolating and Assessing the Portfolio 742 Performance Potential of Stock Return Forecast Models with an Illustration, in J.B. Guerard, 743 Jr., editor, The Handbook of Portfolio Construction: Contemporary Applications of Markowitz 744 Techniques. New York: Springer.
Stone, B. K. and J.B. Guerard, Jr. 2010b. "Quantitative Stock Selection in Japan and the United 746 States: Some Past and Current Issues". Presented at the CRSP Form, The University of 747 Chicago, Chicago: IL, Nov. 4-5.
Young, W.E. and R.H. Trent. 1979. "Geometric Mean Approximation of Individual Security and 749 Portfolio Performance." The Journal of Financial and Quantitative Analysis 4, 179-199. 750
Williams, J.B. 1938. The Theory of Investment Value. Cambridge: Harvard University Press. 751

Author Queries

Chapter No.: 6 192189_1_En

Query Refs.	Details Required	Author's response
AU1	Guerard et al. (1993) is cited in the text but its bibliographic information is missing. Kindly provide its bibliographic information. Otherwise, please delete it from the text.	,
AU2	Roll (1977) is cited in the text but its bibliographic information is missing. Kindly provide its bibliographic information. Otherwise, please delete it from the text.	
AU3	Roll (1969) is cited in the text but its bibliographic information is missing. Kindly provide its bibliographic information. Otherwise, please delete it from the text.	
AU4	King (1966), Farrell (1973), Rosenberg (1973, 1976, 1979), Stone (1974, 2002), Ross (1976) and Ross and Roll (1980), Blin and Bender (1995), and Blin et al. (1998) are cited in the text but its bibliographic information is missing. Kindly provide its bibliographic information. Otherwise, please delete the citations from the text.	
AU5	Farrell (1974) is cited in the text but its bibliographic information is missing. Kindly provide its bibliographic information. Otherwise, please delete it from the text.	
AU6	Farrell (1997) is cited in the text but its bibliographic information is missing. Kindly provide its bibliographic information. Otherwise, please delete it from the text.	
AU7	Bernell Stone (1974) is cited in the text but its bibliographic information is missing. Kindly provide its bibliographic information. Otherwise, please delete it from the text.	
AU8	Please check whether the edit made to the sentence "For instance, if we were trying..." is ok.	

AU9	Please check whether the expansion "Consumer Price Index" correctly corresponds to the acronym "CIP" in the sentence "Chen, Ross, and Roll defined...".			
AU10	Please check whether it should be "actual" instead of "actually" in the sentence "It can be shown that if the regression...".			
AU11	Barr Rosenberg and Walt McKibben (1973) is cited in the text but its			
bibliographic information is missing.				
Kindly provide its bibliographic in-				
formation. Otherwise, please delete it				
from the text.			\quad	AU12
:---				
AU18				
Rudd and Clasing (1982) is cited in				
the text but its bibliographic informa-				
tion is missing. Kindly provide its				
bibliographic information. Other-				
wise, please delete it from the text.	\quad.			

AU19	Markowitz and Xu (1993) is cited in the text but its bibliographic informa- tion is missing. Kindly provide its bibliographic information. Other- wise, please delete it from the text.	
AU20	Please revise the sentence "Funda- mental factors like..." for clarity of thought.	
AU21	Rao (1973) is cited in the text but its bibliographic information is missing. Kindly provide its bibliographic in- formation. Otherwise, please delete it from the text.	
AU22	Basu (1977); Blin et al. (1997); Chen et al. (1986); Elton et al. (2007); Elton et al. (1981); Graham et al. (1934, 1962); Guerard and Takano (1991); Guerard (1990); Liu et al. (2011); Markowitz (1959); Miller and Guerard (1991); Mossin (1966); Mossin (1973); Nerlove (1968); Ro- senberg and McKibben (1973); Ro- sengerg and Marathe (1976); Sharpe (1963); Ramnath et al. (2008); Rao (1973); Stone and Guerard (2010b); Young and Trent (1979); John Burr (1938) have been provided in the reference list but citations in the text are missing. Please advise location of citations. Otherwise, delete it from the reference list.	

Chapter 7

Abstract

In the previous chapter, we used the Barra Aegis system to create and measure 5

 portfolios using the USER model. The Barra Model is referred as a fundamental 6 risk model because security fundamental data is used to create the risk, or style, 7 indexes. In this chapter, we create portfolios using statistically-based risk models in 8 the USA and global markets. In this chapter, we address several additional issues 9 in portfolio construction and management with Guerard et al. (2012) USER data. 10 First, we test the issue of whether Markowitz mean-variance, MV, portfolio 11 construction model (1956, 1959, 1987), with a fixed upper bound on security 12 weights, dominates the Markowitz enhanced index tracking, EIT, portfolio con- 13 struction model (1987) in which security weights are an absolute deviation from 14 the security weight in the index. We will refer to the absolute deviation from the 15 benchmark weight-enhanced index portfolio construction weight as the equal active 16 weighting, or EAW, portfolio construction model. Guerard, Krauklis, and Kumar 17 (2012) reported that MV portfolios produced higher Information Ratios and Sharpe 18 Ratios than EAW portfolios with weights less than EAW4. A newer approach to the 19 systematic risk optimization technique is the Systematic Tracking Error optimiza- 20 tion technique reported by Wormald and van der Merwe (2012). We will show the 21 effectiveness of the Systematic Tracking Error approach using Global Expected 22 Returns (GLER) data over the 2002-2011 period. Finally, we demonstrate using the 23 Axioma system and its Alpha Alignment Factor (AAF) analysis reported in Saxena 24and Stubbs (2012) that the AAF is appropriate for USER and GLER Data and that the Axioma Statistical Risk Model dominates the Axioma Fundamental Model. ${ }^{1}$

The security weights are the primary decision variables to be solved in efficient portfolios. Second, we test whether a (traditional) mean-variance optimization technique using the portfolio variance as the relevant risk measure dominates risk-return trade-off curve using the Blin-Bender APT Tracking Error at Risk (TaR) optimization technique which emphasizes systematic, or market, risk. The APT measure of portfolio risk, TaR, estimates the magnitude that the portfolio return may deviate from the benchmark return over 1 year. Specifically, the TaR optimization technique emphasizes systematic risk, rather than total risk, in portfolio optimization. A statistically-based principal components analysis (PCA) model is used to estimate and monitor portfolio risk in the Blin and Bender TaR system.

To address these issues, we construct efficient portfolios with the USER data, solving for security weights using mean-variance and equal active weighting portfolio construction models for the 1997-2009 period. The MV portfolio construction model with fixed security upper bounds performs very well in comparison to EAW portfolio construction models. Mean-variance portfolios with a 4% security upper bound outperform EAW 1, 2, and 3% strategies. One must use an (at least) EAW 4\% strategy to outperform the MV portfolio construction model with a 4\%, see Guerard, Krauklis, and Kumar (2012). Index-tracking portfolio construction models are extremely useful if a manager is more concerned with underperforming an index; however, the portfolio manager must be aggressive with the EAW strategy to outperform a traditional mean-variance portfolio construction analysis.

We employ mean-variance and TaR optimization techniques to test whether equal active weighting strategies of $1,2,3,4$, and 5% (weight deviations from the index, or benchmark, weights) outperform mean-variance strategies using 4 and 7% maximum security weights. We will show mean-variance portfolios using the Tracking Error at Risk optimization technique outperform the mean-variance

[^38]optimization technique during the 1997-2009 period. Both optimization techniques 54 produce statistically significant asset selection. We employ the Wormald and van 55 der Merwe (2012) Systematic Tracking Error optimization techniques and find 56 statistically significant asset selection. In this chapter, we examine two portfolio 57 construction models: mean-variance and equal active weighting models; and two 58 portfolio optimization techniques: mean-variance and Tracking Error at Risk, and 59 Systematic Tracking Error optimization techniques.

Lambda is a measure of the trade-off between expected returns and risk, as 61 measured by the portfolio standard deviation. Generally, the higher the lambda, 62 the higher is the expected ratio of expected return to standard deviation. That is, 63 creating portfolios with less than optimal lambdas produce portfolio excess returns 64 that are not statistically different from zero, whereas appropriate lambdas create 65 portfolios that are statistically significant. In the King's English, benchmark- 66 hugging portfolio construction techniques can destroy significant asset selection. 67 We assume that the portfolio manager seeks to maximize the combination of 68 portfolio Geometric Mean (GM), Sharpe Ratio (ShR), and Information Ratio (IR), 69 and asset selection in the Barra attribution analysis. If a portfolio manager has 70 models that produce slightly different ordering on these criteria, we maximize the 71 Geometric Mean (Latane 1959; Vander Weide 2010) as the ultimate criteria, since it 72 is well known that risk is implicit in the Geometric Mean (Markowitz, Chap. 9).

Constructing Efficient Portfolios

In the previous chapter, we discussed the Barra Aegis system and its use in creating 75 efficient portfolios that produce statistically significant asset selection. Let us step 76 back for a moment and review six decades of portfolio construction and manage- 77 ment. In the beginning, there was Markowitz (1952). The Markowitz portfolio 78 construction approach seeks to identify the efficient frontier, the point at which 79 returns are maximized for a given level of risk, or minimize risk for a given level of 80 return. The reader is referred to Markowitz (1959) for the seminal discussion of 81 portfolio construction and management. The portfolio expected return, $E\left(R_{\mathrm{p}}\right)$, is 82 calculated by taking the sum of the security weights, w, multiplied by their 83 respective expected returns. The portfolio standard deviation is the sum of weighted 84 security covariances.

$$
\begin{align*}
& E\left(R_{\mathrm{p}}\right)=\sum_{i=1}^{N} w_{i} E\left(R_{i}\right), \tag{7.1}\\
& \sigma_{\mathrm{p}}^{2}=\sum_{i=1}^{N} \sum_{j=1}^{N} w_{i} w_{j} \sigma_{i j} \tag{7.2}
\end{align*}
$$

where $\sum_{i=1}^{N} w_{i}=1$ the security weighting summing to one indicates that the portfolios are fully invested.

The Markowitz framework measured risk as the portfolio standard deviation, its measure of dispersion, or total risk. One seeks to minimize risk, as measured by the covariance matrix in the Markowitz framework, holding constant expected returns. Elton et al. (2007) write a more modern version of the traditional Markowitz mean-variance problem as a maximization problem:

$$
\begin{equation*}
\theta=\frac{E\left(R_{\mathrm{p}}\right)-R_{\mathrm{F}}}{\sigma_{\mathrm{p}}^{2}} \tag{7.3}
\end{equation*}
$$

where $\sum_{i=1}^{N} w_{i}=1$
and

$$
\sigma_{\mathrm{p}}^{2}=\sum_{i=1}^{N} w_{i}^{2} \sigma_{i}^{2}+\sum_{i=1}^{N} \sum_{j=1}^{N} w_{i} w_{j} \sigma_{i j}, \quad i \neq j
$$

and R_{F} is the risk-free rate (90-day treasury bill yield).
The optimal portfolio weights are given by:

$$
\frac{\partial \theta}{\partial w_{i}}=0
$$

As in the initial Markowitz analysis, one minimizes risk by setting the partial derivative of the portfolio risk with respect to the security weights, the portfolio decision variables, to 0 .

Modern portfolio theory evolved with the introduction of the Capital Asset Pricing Model, the CAPM. Implicit in the development of the CAPM by Sharpe (1964), Lintner (1965), and Mossin (1966) is that the investors are compensated for bearing systematic or market risk, not total risk. Systematic risk is measured by the stock beta. The beta is the slope of the market model in which the stock return is regressed as a function of the market return. ${ }^{2}$ An investor is not compensated for bearing risk that may be diversified away from the portfolio.

The CAPM holds that the return to a security is a function of the security's beta.

$$
\begin{equation*}
R_{j t}=R_{\mathrm{F}}+\beta_{j}\left[E\left(R_{M t}\right)-R_{\mathrm{F}}\right]+e_{j}, \tag{7.5}
\end{equation*}
$$

[^39]where $R_{j t}=$ expected security return at time $t ; E\left(R_{M t}\right)=$ expected return on the 108 market at time $t ; R_{\mathrm{F}}=$ risk-free rate; $\beta_{j}=$ security beta; and $e_{j}=$ randomly 109 distributed error term. 110

An examination of the CAPM beta, its measure of systematic risk, from the 111 Capital Market Line equilibrium condition follows. 112

$$
\begin{equation*}
\beta_{j}=\frac{\operatorname{Cov}\left(R_{j}, R_{M}\right)}{\operatorname{Var}\left(R_{M}\right)} . \tag{7.6}
\end{equation*}
$$

The difficulty of measuring beta and its corresponding SML gave rise to extra- 113 market measures of risk found in the work of Rosenberg (1974), Rosenberg and 114 Marathe (1979), Ross (1976), and Ross and Roll (1980). ${ }^{3}$ The fundamentally-based 115 domestic Barra risk model was developed in the series of studies by Rosenberg and 116 thoroughly discussed in Rudd and Clasing (1982) and Grinhold and Kahn (1999), 117 and as discussed in the previous chapter.

The total excess return for a multiple-factor model (MFM) in the Rosenberg 119 methodology for security j, at time t, dropping the subscript t for time, may be 120 written like this:

$$
\begin{equation*}
E\left(R_{j}\right)=\sum_{k=1}^{K} \beta_{j k} \tilde{f}_{k}+\tilde{e}_{j} \tag{7.7}
\end{equation*}
$$

The nonfactor, or asset-specific return on security j, is the residual risk of the 122 security after removing the estimated impacts of the K factors. The term f is the rate ${ }_{123}$ of return on factor " k." A single-factor model, in which the market return is the only 124 estimated factor, is obviously the basis of the CAPM. Accurate characterization of 125 portfolio risk requires an accurate estimate of the covariance matrix of security 126 returns. An alternative to the fundamentally-based Barra risk model is a risk model 127 based on statistically-estimated (orthogonal) principal components, as described in 128 the APT model of Blin et al. (1997).

Extensions to the Traditional Mean-Variance Model

A second extension to the mean-variance approach involves the minimization of 131 the tracking error of an index. Markowitz $(1987,2000)$ rewrites the general 132 portfolio construction model variance, V, to be minimized as:

$$
\begin{equation*}
V=(X-W)^{T} C(X-W), \tag{7.8}
\end{equation*}
$$

[^40]where $W^{T}=\left(W_{1}, \ldots, W_{n}\right)=$ the weights of an index of returns, X are the portfolio weights, and $r^{T}=\left(r_{1}, \ldots, r_{n}\right)=$ security returns.

One creates portfolios by allowing portfolio weights to differ from index weights by $\pm 1 \%$, EAW $1,2 \%$, EAW $2,3 \%$, EAW3, 4%, EAW4, or 5%, EAW5. Obviously, one can use an infinite set of EAW variations. We restrict this analysis to EAW1, EAW2, EAW3, and EAW4 for simplicity.

Portfolio Construction, Management, and Analysis: An Introduction to Tracking Error at Risk

The USER simulation conditions are identical to those described in Guerard et al. (2012), in which we use monthly optimization with 8% turnover, 125 basis points, each way, of transactions cost. ${ }^{4}$ We use the APT risk model and optimizer described in Blin et al. (1997) to create portfolios during the 1997-2009 period by varying the portfolio lambda. One seeks to maximize the Geometric Mean, Sharpe Ratios, and Information Ratios of portfolios. However, what if one wants to be considered a "concentrated portfolio manager" who does not hold 300-500 stocks. How many securities should one employ in portfolios using MV and EAW construction models with a monthly set of 3,000 expected return and covariance data? Can a manager construct efficient portfolios of 3,000 stock universes with fewer than 100 securities in the portfolios?

Guerard (2012) demonstrated the effectiveness of APT and Sungard APT systems in portfolio construction and management. Let us review the APT approach to portfolio construction. The estimation of security weights, x, in a portfolio is the primary calculation of Markowitz's portfolio management approach, as we have discussed in several chapters. The issue of security weights will be now considered from a different perspective. As previously discussed, the security weight is the proportion of the portfolio's market value invested in the individual security.

$$
\begin{equation*}
x_{s}=\frac{\mathrm{MV}_{s}}{\mathrm{MV}_{\mathrm{p}}} \tag{7.9}
\end{equation*}
$$

[^41]where $x_{s}=$ portfolio-weight insecurity $s, \mathrm{MV}_{s}=$ value of security s within the 160 portfolio, and $\mathrm{MV}_{p}=$ the total market value of portfolio.

The active weight of the security is calculated by subtracting the security weight 162 in the (index) benchmark, b, from the security weight in the portfolio, p.

$$
\begin{equation*}
x_{s, \mathrm{p}}-x_{s, \mathrm{~b}} . \tag{7.10}
\end{equation*}
$$

Accordingly, if IBM has a 3% weight in the portfolio while its weight in the 164 benchmark index is 2 and $11 / 2 \%$, then IBM has a positive, 50 basis points active 165 weight in the portfolio. The portfolio manager has an active, positive opinion of 166 securities on which he or she has a positive active weight and a negative opinion of 167 those securities with negative active weights.

Markowitz analysis $(1952,1959)$ and its efficient frontier minimized risk for a 169 given level of return. Risk can be measured by a stock's volatility, or the standard 170 deviation in the portfolio return over a forecast horizon, normally 1 year.

$$
\begin{equation*}
\sigma_{\mathrm{p}}=\sqrt{E\left(r_{\mathrm{p}}-E\left(r_{\mathrm{p}}\right)\right)^{2}} \tag{7.11}
\end{equation*}
$$

Blin and Bender created an APT, Advanced Portfolio Technologies, Analytics 172 Guide (2005), which built upon the mathematical foundations of their APT system, 173 published in Blin et al. (1997). The following analysis draws upon the APT 174 analytics. Volatility can be broken down into systematic and specific risk:

$$
\begin{equation*}
\sigma_{\mathrm{p}}^{2}=\sigma_{\mathrm{Bp}}^{2}+\sigma_{\mathrm{sp}}^{2}, \tag{7.12}
\end{equation*}
$$

where $\sigma_{\mathrm{p}}=$ total portfolio volatility, $\sigma_{\beta \mathrm{p}}=$ systematic portfolio volatility, and 176 $\sigma_{\mathrm{sp}}=$ specific portfolio volatility.

Blin and Bender created a multifactor risk model within their APT risk model 178 based on forecast volatility.

$$
\begin{equation*}
\sigma_{\mathrm{p}}=\sqrt{52\left(\sum_{c=1}^{c}\left(\sum_{i=1}^{s} x_{i} \beta_{i, c}\right)^{2}+\sum_{i=1}^{s} x_{i}^{2} \varepsilon_{i, x}^{2}\right)}, \tag{7.13}
\end{equation*}
$$

where $\sigma_{\mathrm{p}}=$ forecast volatility of annual portfolio return, $C=$ number of statistical 180 components in the risk model, $x_{i}=$ portfolio weight in security $i, \beta_{i, c}=$ the loading 181 (beta) of security i on risk component c, and $\varepsilon_{i, \mathrm{w}}=$ weekly specific volatility of 182 security i.

The Blin and Bender (1995) systematic volatility is a forecast of the annual 184 portfolio standard deviation expressed as a function of each security's systematic 185 APT components.

$$
\begin{equation*}
\sigma_{\beta \mathrm{p}}=\sqrt{52 \sum_{c=1}^{c}\left(\sum_{i=1}^{s} x_{i} \beta_{i, c}\right)^{2}} . \tag{7.14}
\end{equation*}
$$ associated with each security's specific return.

$$
\begin{equation*}
\sigma_{\varepsilon \mathrm{p}}=\sqrt{52 \sum_{i=1}^{s} x_{i}^{2} \varepsilon_{i, x}^{2}} . \tag{7.15}
\end{equation*}
$$

Tracking error, te, is a measure of volatility applied to the active return of funds 190 (or portfolio strategies) indexed against a benchmark, which is often an index.
191 Portfolio tracking error is defined as the standard deviation of the portfolio return 192 less the benchmark return over 1 year.

$$
\begin{equation*}
\sigma_{\mathrm{te}}=\sqrt{E\left(\left(\left(r_{\mathrm{p}}-r_{\mathrm{b}}\right)-E\left(r_{\mathrm{p}}-r_{\mathrm{b}}\right)\right)^{2}\right)} \tag{7.16}
\end{equation*}
$$

193 where $\sigma_{\mathrm{te}}=$ annualized tracking error, $r_{\mathrm{p}}=$ actual portfolio annual return, and

$$
\begin{equation*}
\sigma_{\mathrm{te}}=\sqrt{52\left(\sum_{c=1}^{c}\left(\sum_{i=1}^{s} x_{i, \mathrm{p}}-x_{i, \mathrm{~b}}\right) \beta_{i, c}\right)^{2}+\sum_{i=1}^{s}\left(x_{i, \mathrm{p}}-x_{i, \mathrm{~b}}\right)^{2} \varepsilon_{i, x}^{2}}, \tag{7.17}
\end{equation*}
$$

$$
\begin{equation*}
\sigma_{\beta \mathrm{te}}=\sqrt{52 \sum_{c=1}^{c}\left(\sum_{i=1}^{s}\left(x_{i, \mathrm{p}}-x_{i, \mathrm{~b}}\right) \beta_{i, c}^{2}\right)} . \tag{7.18}
\end{equation*}
$$

Portfolio-specific tracking error can be written as a forecast of the annual portfolio active return associated with each security's specific behavior.

$$
\begin{equation*}
\sigma_{\varepsilon \mathrm{te}}=\sqrt{52 \sum_{i=1}^{s}\left(x_{i, \mathrm{p}}-x_{i, \mathrm{~b}}\right)^{2} \varepsilon_{i, x}^{2}} \tag{7.19}
\end{equation*}
$$

The marginal volatility of a security, or the measure of the sensitivity of portfolio volatility, is relative to the change in the specific security weight.

$$
\begin{equation*}
\partial_{s}=\frac{\partial \sigma_{\mathrm{p}}}{\partial x_{s}} \tag{7.20}
\end{equation*}
$$

where $\partial_{s}=$ marginal risk of security s.

$$
\begin{equation*}
\partial_{s}=\beta_{s \mathrm{p}} \sigma_{\mathrm{p}} . \tag{7.21}
\end{equation*}
$$

The portfolio Value-at-Risk (VaR) is the expected maximum loss that a portfolio 206 could produce over 1 year.

$$
\begin{equation*}
\operatorname{VaR}=v_{\mathrm{p}}=\tilde{V}_{T} \text { given } \operatorname{prob}\left(V_{T}<\tilde{V}_{T}\right)=c, \tag{7.22}
\end{equation*}
$$

where $V_{T}=$ actual potential portfolio value in 1 year, $\tilde{V}_{T}=$ potential portfolio 208 value in 1 year, and $c=$ desired confidence level for VaR (i.e., 95%).

If a portfolio return is assumed to be generated from a normal distribution, then 210

$$
\begin{equation*}
v_{\mathrm{p}}=\sqrt{2} \operatorname{erf}^{-1}\left(2_{x}-1\right) \sigma_{\mathrm{p}} V_{0}, \tag{7.23}
\end{equation*}
$$

where $\operatorname{erf}^{-1}(x)=$ inverse error function and $V_{0}=$ current portfolio value.
The APT calculated VaR is written like this:

$$
\begin{equation*}
v_{\mathrm{p}}=\sqrt{2} \operatorname{erf}^{-1}\left(2_{x}-1\right)\left(\sqrt{52\left(\sum\left(\sum x_{i} \beta_{i, c}\right)^{2}+\sum x_{i}^{2} \varepsilon_{i, x}^{2}\right)}\right) V_{0} \tag{7.24}
\end{equation*}
$$

The APT measure of portfolio risk estimating the magnitude that the portfolio 213 return may deviate from the benchmark return over 1 year is referred to as TaR, or 214 Tracking-at-Risk ${ }^{\mathrm{TM}}$.

$$
\begin{equation*}
T_{\mathrm{p}}^{V}=\sqrt{\left(\frac{1}{\sqrt{1-x}} \sigma_{s}\right)^{2}+\left(\sqrt{2} \operatorname{erf}^{-1}(x) \sigma_{\varepsilon}\right)^{2}} \tag{7.25}
\end{equation*}
$$

where $T_{\mathrm{p}}^{V}=\mathrm{TaR}^{\mathrm{TM}}, x=$ desired confidence level of $\mathrm{TaR}^{\mathrm{TM}}, \sigma_{s}=$ portfolio 216 Systematic Tracking Error, $\operatorname{erf}^{-1}(x)=$ inverse error function, and $\sigma_{\varepsilon}=$ portfolio- 217 specific tracking error. 218

Blin and Bender (1987-1997) estimated a 20 -factor beta model of covariances 219 based on two-and-one-half years of weekly stock returns data. The Blin and Bender 220 AUZ Arbitrage Pricing Theory (APT) model followed the Ross factor modeling theory, 221 but Blin and Bender estimated betas from at least 20 orthogonal factors. Blin and 222 Bender never sought to identify their factors with economic variables. 223

Guerard et al. (2010) found that the APT-TaR estimation procedure helped in 224 creating 130/30 portfolios relative to traditional Markowitz mean-variance and 225 equal active weighting portfolios. Guerard (2012) reported very similar results in 226

Char. 7.1 USER Tracking Error at Risk (TaR) MV, EAW strategies, January 1997 to December 2009
construct equal active weighting (EAW2 with 2\% deviations), mean-variance (MV with a 4% maximum weight) and Mean-Variance Tracking Error at Risk (MVTaR) portfolios for January 1997 to December 2009 using 8\% monthly turnover, after the initial portfolio is created, and 150 basis points of transactions costs each way with USA and Global Expected Returns series. Comparing EAW, MV, and MV TaR provides support for the MVTaR procedure in the USA, as TaR maximizes the Geometric Mean, Sharpe Ratio, and Information Ratio relative to EAW and MV. In the global universe, MVTaR maximizes the Geometric Mean and Sharpe Ratio. EAW maximizes the Information Ratio in global markets over this time period.

Reported that APT-TaR estimation procedures were very successful in maximizing Information Ratios and Sharpe Ratios relative to MV and EAW techniques with the USER data.

Guerard, Krauklis, and Kumar (2012) reported that mean-variance dominated EAW1, EAW2, and EAW3 strategies with the USER data. One had to use an EAW4 to perform as well as mean-variance efficient frontier (Char. 7.1).

The USER EAW1 curve showed no risk-return trade-off. An investor would be hard-pressed to outperform if he or she used an EAW1 strategy (unless he or she managed an index-enhanced product).

Guerard, Krauklis, and Kumar (2012) reported great APT-TaR portfolio results with the USER data. Let us review some of the Guerard, Krauklis, and Kumar (2012) results, shown in Table 7.1.
t1.1 Table 7.1 Optimal portfolio risk-return summary statistics

Table 7.2 Average number of securities in optimal portfolios

USER analysis					
January 1997 to December 2009					
Lambda	EAW1	EAW2	EAW3	EAW4	MV
Tracking error at risk optimization					
500	118.1	85.4	74.7	68.6	64.8
200	122.6	92.2	82.5	77.4	77.8
100	125.6	100.0	92.2	90.5	90.5
50	131.3	111.7	105.0	103.5	103.4
10	147.3	137.4	133.7	133.2	136.2
Traditional optimization					
500	127.1	100.5	91.8	88.7	87.1
200	131.2	108.4	101.4	96.6	99.7
100	138.3	119.5	115.4	110.6	114.0
50	141.2	122.2	118.1	124.5	118.6
10	161.6	157.9	156.4	155.0	159.8

The Geometric Means, Sharpe Ratios, and Information Ratios for the mean-variance and Mean-Variance Tracking Error at Risk support the use of lambda 200 and the MVTaR approach.

It is well known that as one raises the portfolio lambda, the expected return of portfolio rises and the number of securities in the optimal portfolios fall, see Blin et al. (1997). Lambda, a measure of risk-aversion, the inverse of the risk-aversion acceptance level of the Barra system, is a decision variable to determine the optimal number of securities in a portfolio. Guerard et al. (2010) report a lambda of 200 maximized the Geometric Mean in Non-USA growth portfolios. Guerard, Krauklis, and Kumar (2012) reported that the lambda of 200 is a necessary lambda with MV, EAW3, and EAW4 portfolio construction model for the USER data to create portfolios with fewer than 100 securities (Table 7.2).

Does the use of the TaR optimization technique produce a higher or lower number of average securities in portfolios than the MV optimization technique? A lambda of 200 implies optimal portfolios of 99.7 (100) stocks with mean-variance, MV, whereas MVTaR requires only 77.8 (78) stocks. The Blin and Bender TaR optimization procedure allows a manager to use fewer stocks in his or her portfolios than a traditional mean-variance optimization technique manager for a given lambda.

The reader notes that EAW1, EAW2, and EAW3 Tracking Error at Risk portfolios require more stocks than MVTaR and are statistically dominated in the risk-return trade-off curve, or Frontier, see Guerard, Krauklis, and Kumar (2012). In spite of the Markowitz mean-variance portfolio construction and management analysis being six decades old, it does very well in maximizing the Sharpe Ratio, Geometric Mean, and Information Ratio relative to newer approaches. The Markowitz Efficient Frontier (1952, 1956, 1959) methodology has performed well with the USER data. Guerard, Krauklis, and Kumar (2012) reported that one must move to an EAW4 and EAW5 strategies to outperform Mean-Variance Tracking Error at Risk models.

Portfolio Construction, Management, and Analysis: An

It has been recognized for many years that sample covariance matrices are not the 279 most suitable for portfolio optimization (Chopra and Ziemba (1993)). When the 280 objective is to create a minimum variance portfolio, there are a series of shrinkage 281 techniques which have been proposed to modify the sample covariance matrix
$\boldsymbol{V}_{\text {sample }}$ (Ledoit and Wolf 2003, 2004), where the need for shrinkage is the estima- 283 tion errors in the sample covariance matrix that may most likely render 284 mean-variance optimizer less efficient. In its place, we suggest using the matrix 285 obtained from the sample covariance matrix through a transformation called 286 shrinkage. This tends to pull the most extreme coefficients towards more central 287 values, systematically reducing estimation error.

Wormald and van der Merwe (2012) searched, via shrinkage techniques, for a 289 better estimate $\boldsymbol{V}_{\text {est }} \neq \boldsymbol{V}_{\text {sample }}$ for the covariance matrix to be used within an 290 optimization, and in particular one which provides a more robust estimator of 291 out-of-sample portfolio variances when used with quite general sets of expected 292 return estimates. ${ }^{5}$ Wormald and van der Merwe considered the advantages of using 293 a factor model representation of the estimated covariance matrix $\boldsymbol{V}_{\text {est }}$ which appears 294 in the Markowitz objective function for optimizing active (benchmark-relative) 295 portfolios when expected returns (alphas) are available for every stock. 296

That Markowitz objective function takes the general form, in terms of the vector 297 of weights w

$$
\begin{equation*}
U[\boldsymbol{w}]=-\lambda \boldsymbol{w}^{\mathrm{T}} \cdot \boldsymbol{a}+1 / 2 \boldsymbol{w}^{\mathrm{T}} \cdot \boldsymbol{V}_{\mathrm{est}} \cdot \boldsymbol{w} \tag{7.26}
\end{equation*}
$$

where λ is called the risk trade-off parameter, and \boldsymbol{a} is the vector of expected 299 returns. A general factor decomposition of the covariance matrix $\boldsymbol{V}_{\text {est }}$ may be made 300 in terms of asset exposures to factors \boldsymbol{X}, the covariance matrix \boldsymbol{F} of the factors 301 themselves, and the diagonal residual or specific term Δ^{2}

$$
\begin{equation*}
\boldsymbol{V}_{\text {est }}=\boldsymbol{V}_{\text {factor }}=\boldsymbol{X}^{\mathrm{T}} \boldsymbol{F} \boldsymbol{X}+\Delta^{2} \tag{7.27}
\end{equation*}
$$

The particular factor model representation we will consider is that provided by 303 an orthonormalized Principal Components Analysis (PCA) factor model, such that 304 the principal components factor covariances are all zero for different factors, and 305 factor variances take the value 1 .

[^42]Then we have, for these particular PCA factor exposures \boldsymbol{B}

$$
\boldsymbol{F}=\boldsymbol{I}
$$

In this case, we can express the estimated asset covariance matrix in the special form

$$
\begin{equation*}
\boldsymbol{V}_{\mathrm{est}}=\boldsymbol{V}_{\mathrm{PCA}}=\boldsymbol{B}^{\mathrm{T}} \boldsymbol{B}+\Delta^{2} \tag{7.28}
\end{equation*}
$$

where \boldsymbol{B} is the matrix of asset exposures to the orthonormalized factors and Δ^{2} is the diagonal matrix of asset-specific risks in the model.

For Wormald and van der Merwe (2012), a key insight into the justification for factor modeling of risk is that it can be understood as an example of shrinkage techniques applied to the sample covariance matrix $\boldsymbol{V}_{\text {sample }}$, and has been widely accepted as an effective way of improving the risk characteristics of optimized portfolios, as described in Chan et al. (1999) and Fabozzi et al. (2002b). A parallel series of studies has focussed on the role of constraints in portfolio optimization, including contributions from Jagannathan and Ma (2003) and DeMiguel et al. (2008) who developed this line of inquiry and showed that many kinds of constraints applied in portfolio optimization can be understood as equivalent to statistically-sensible shrinkage of the sample covariance matrix. DeMiguel et al. (2008) focused on a detailed comparison of a set of portfolio strategies which are specified entirely by particular constraints defined in terms of the norm of the portfolio-weight vector, and provide a moment-shrinkage interpretation for the action of the constraint. In particular those authors prove analytically that quadratic constraints such as constraints on norms constructed from portfolio-weight vectors provide solutions which have a one-to-one correspondence with the portfolios proposed via the covariance shrinkage technique discussed in Ledoit and Wolf (2004). The empirical evidence they provide demonstrates that norm-constrained portfolios often have a higher Sharpe Ratio than less-constrained portfolio strategies and those considered by Jagannathan and Ma (2003) and Ledoit and Wolf (2003, 2004).

The issue of how best to apply shrinkage to the covariance matrix is also considered by Disatnik and Benninga (2007) who pay special attention to the use of shrinkage estimators and portfolios of estimators, a concept closely related to risk factor modeling. Their work, which is only concerned with the problem of constructing risk-minimized portfolios, suggests that short-sales constraints make a substantial difference in reducing the ex-post portfolio risk, compared to unconstrained global minimum solutions, and that it is quite difficult to obtain statistically significant differences from the ex-post risk for similarly-constrained solutions with differing covariance matrix estimators. This difficulty is one which also prevails when looking at the evidence for improved ex-post risk-adjusted performance when optimizing with an alpha model, which is the empirical case considered in the present study. When the objective is to create a portfolio with maximal alpha for a
given risk (with either risk or alpha constrained to lie within bounds), there has been 345 considerable attention paid to the question of whether the utility function should be 346 modified to reflect the distinction between spanned and orthogonal alpha. The 347 problem has been set out explicitly in Lee and Stefek (2008). The emphasis on 348 treating spanned alpha (explained by the systematic factors of the risk model) and 349 orthogonal alpha (not explained by those factors) differently within the utility 350 function is motivated by very similar considerations to those treated in the literature 351 on shrinkage approaches, where both the process of estimating expected asset 352 return correlations via a model based on factors and the subsequent placing of 353 constraints on portfolio norms (DeMiguel et al. 2008) have been shown to be 354 effective in generating portfolios with significant out-of-sample improvement in 355 risk characteristics.

Let us review the Wormald and van der Merwe (2012) distinctions between 357 systematic and specific parts of the risk, since it is this distinction which underlies 358 the concern that spanned alpha should be treated differently from orthogonal alpha 359 within an optimization. The portfolio variance may in general be decomposed into a 360 factor (systematic or spanned) part and a residual (specific or orthogonal) part: 361

$$
\begin{equation*}
\sigma_{\text {total }}^{2}=\sigma_{s}^{2}+\sigma_{e}^{2} \tag{7.29}
\end{equation*}
$$

The first part of the risk term, defined in terms of the portfolio-weight vector \boldsymbol{w} as 362

$$
\begin{equation*}
\sigma_{s}^{2}=\boldsymbol{w}^{\mathrm{T}} \cdot\left(\boldsymbol{B}^{\mathrm{T}} \boldsymbol{B}\right) \cdot \boldsymbol{w}, \tag{7.30}
\end{equation*}
$$

the factor risk of the portfolio, while the second part of the risk term, defined as 363

$$
\begin{equation*}
\sigma_{e}^{2}=\boldsymbol{w}^{\mathrm{T}} \cdot \Delta^{2} \cdot \boldsymbol{w} \tag{7.31}
\end{equation*}
$$

the specific risk of the portfolio.
Wormald and van der Merwe (2012) demonstrated via the USER strategy 365 simulation how the APT optimizer can be useful in implementing portfolio con- 366 struction. Solutions which are constrained to be bounded on both systematic and 367 specific risk terms require a second-order cone solver for efficient solutions, as 368 described in Kolbert and Wormald (2010).

A great advantage in having efficient methods available to generate these 370 solutions is that the investor's intuition can be tested and extended as the underlying 371 utility or the investment constraints are varied. We present an analysis of the effects 372 of the systematic risk constraint on various style exposures including momentum 373 within the strategy simulation.

The objective function, to be minimized, for the optimization is now defined in 375 terms of the active weight vector \boldsymbol{w} of the portfolio, is given by exact analogy in: 376

$$
\begin{equation*}
U[\boldsymbol{w}]=-\lambda \boldsymbol{w}^{\mathrm{T}} \cdot \boldsymbol{a}+1 / 2 \boldsymbol{w}^{\mathrm{T}} \cdot\left(\boldsymbol{B}^{\mathrm{T}} \boldsymbol{B}+\Delta^{2}\right) \cdot \boldsymbol{w} \tag{7.32}
\end{equation*}
$$

where λ is the risk trade-off parameter and \boldsymbol{a} is the vector of MQ alphas.
The covariance matrix is given by the APT factor model representation of (7.5):

$$
\begin{equation*}
V_{\mathrm{pca}}=\boldsymbol{B}^{\mathrm{T}} \boldsymbol{B}+\Delta^{2} \tag{7.33}
\end{equation*}
$$

where \boldsymbol{B} is the matrix of asset exposures to the APT factors and Δ^{2} is the diagonal matrix of asset-specific risks in the model. In the empirical results set out here, we are concerned with active risk measures, and so we introduce the terminology of tracking error (TE) rather than variance for describing the factor and non-factor parts of the active risk. The effects of shrinkage in factor model estimation are demonstrated by considering the 2-part form of the total active risk (tracking error squared) term; we write, following the analogy with (7.32):

$$
\begin{equation*}
\sigma_{A \text { total }}^{2}=\sigma_{A s}^{2}+\sigma_{A e}^{2} \tag{7.34}
\end{equation*}
$$

The first part of the risk term, defined as

$$
\begin{equation*}
\sigma_{A s}^{2}=\boldsymbol{w}^{\mathrm{T}} \cdot\left(\boldsymbol{B}^{\mathrm{T}} \boldsymbol{B}\right) \cdot \boldsymbol{w} \tag{7.35}
\end{equation*}
$$

the active systematic risk (or systematic TE squared) of the portfolio, while the second part of the risk term, defined as

$$
\begin{equation*}
\sigma_{A e}^{2}=\boldsymbol{w}^{\mathrm{T}} \cdot \Delta^{2} \cdot \boldsymbol{w} \tag{7.36}
\end{equation*}
$$

the active specific risk (or specific TE squared) of the portfolio. Wormald and van der Merwe (2012) demonstrated the effects of shrinkage implied by optimization constraints within the empirical results, by putting separate constraints on the total TE and the systematic TE during the optimized USER simulations.

Wormald and van der Merwe (2012) implemented three strategies. The three strategies are very similar, except for differences in systematic active risk constraints. The first strategy constructs portfolios without any constraints on Systematic Tracking Error (TE), and is referred to as NoRiskConst. Another strategy places a mild constraint on systematic TE and is referred to as MildRiskConst. The mild constraint level reflects a level of systematic TE slightly lower than the average of the observed values in NoRiskConst. In MildRiskConst systematic TE is constrained to be below 2.3%. The third strategy constrains systematic TE to be below 1.5% and is called StrongRiskConst. Wormald and van der Merwe (2012) reported USER simulation results suggesting that applying a mild Systematic TE constraint leads to slight outperformance in the long run compared to other strategies. All three strategies outperform the benchmark. The Systematic Tracking Error methodology of Wormald and van der Merwe (2012) offered statistically significant asset selection and effective portfolio construction and management.

Table 7.3 Mild, strong, and no risk controls in a global universe, January 2002 to December $2011 \quad \mathrm{t} 3.1$

| Universe: All Country World Growth (ACWG) | | | t3.2 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Model | Geometric Mean | Sharpe Ratio | Information Ratio | STD | t3.3 |
| No risk control | 14.16 | 0.53 | 0.65 | 23.20 | t3.4 |
| Mild risk control | 13.75 | 0.49 | 0.59 | 24.18 | t3.5 |
| Strong risk control | 11.08 | 0.41 | 0.54 | 22.71 | t3.6 |
| Benchmark | 4.56 | 0.16 | | 13.23 | t3.7 |
| STD portfolio standard | | | | t3.8 | |

We use an All Country World Growth (ACWG) index and its constituents for the 408 January 2002 to December 2011 period. We use a lambda of 200 and employ the 409 Wormald and van der Merwe (2012) risk parameters. We find that the No Risk 410 Control and Mild Risk Control simulations dominate the Strong Risk Control 411 simulation, a result consistent with Wormald and van der Merwe. The three risk 412 models work well, producing at least 700 basis points of outperformance, 413 subtracting 150 basis points of transactions costs, each way, please see Table 7.3. 414

Markowitz Restored: The Alpha Alignment Factor Approach

Several academics and practitioners, decided to perform a postmortem analysis of 416 the mean-variance portfolios, attempted to understand the reasons for the deviation 417 of ex-post performance from ex-ante targets and used their analysis to suggest 418 enhancements to Markowitz's original approach. Lee and Stefek (2008) and Saxena 419 and Stubbs (2012) have worked on optimization models to "restore" a better 420 relationship between ex-ante and ex-post risk model estimates. One of the funda- 421 mental contributions was the development of linear factor models to capture the 422 sources of systematic risk and characterize the key drivers of excess returns. While 423 predicting expected returns is exclusively a forward looking activity, risk prediction 424 also focuses on explaining cross-sectional variability of the returns process, mostly 425 by using historical data. The first moment of the equity returns process drives 426 expected return modelers while the second moment is the focus of risk modelers. 427 These differences in the ultimate goals inevitably introduce certain "misalignment" 428 between the factors used to forecast expected returns and risk. While expected 429 return and risk models are indispensable components of any active strategy, there is 430 a third component, namely, the set of constraints used to build a portfolio. 431 Constraints play an important role in determining the composition of the optimal 432 portfolio. Most real-life quantitative strategies have constraints that model desirable 433 characteristics of the optimal portfolio. While some of these constraints may be 434 mandatory, for example, a client's reluctance to invest in stocks that benefit from 435 alcohol, tobacco or gambling activities on ethical grounds, other constraints are the 436 result of best practices in practical portfolio management. A turnover constraint 437 may create a factor misalignment, as we will find shortly in the USER analysis. 438

Saxena and Stubbs (2012) summarize, quantitative equity portfolio construction entails complex interaction between factors used for forecasting expected returns, risk, and the constraints. Problems that arise due to mutual discrepancies between these three entities are collectively referred to as Factor Alignment Problems (FAP) and constitute the emphasis of the current paper. Our key contributions are summarized below:

1. The differences in the approaches that are used to build expected return forecast and risk models manifest themselves as misalignment between the alpha and risk factors.
2. Using an optimization tool to construct the optimal holdings has the unintended effect of magnifying sources of misalignment. The optimize underestimates the systematic risk of the portion of the expected returns which is not aligned with the risk model. Consequently, it overloads the portion of the expected returns which is uncorrelated with all the user risk factors.
3. Our empirical results on a test-bed of real-life active portfolios based on client data clearly refute the validity of the assumption that the portion of alpha that is uncorrelated with all the risk factors has no systematic risk, and suggest the existence of systematic risk factors which are missing from the risk model.
4. We propose augmenting the risk model with an additional auxiliary factor to account for the effect of the missing risk factors in the risk model. The augmenting factor is constructed dynamically and takes a holistic view of the portfolio construction process involving the alpha model, the risk model, and the constraints. We provide analytical evidence to attest the effectiveness of the proposed approach.
5. Alternatively, the risk model can be augmented by adding the factors that are used to compute expected returns, and which are not represented in the risk model. The addition of these factors will provide full alignment between the risk model and the expected returns, but not necessarily handle any misalignment issues due to the use of constraints.

Quantitative strategies are typically based on three key components, namely, expected returns (or alphas), a risk model, and the constraints. The risk model is geared towards explaining cross-sectional variability in the historical and predicted returns. The efficacy of a risk model is judged by its ability to capture systematic risk factors and the correlation structure between their respective factor returns. The disparity in their respective objectives naturally affects the factors that are used in the linear models that are used in their construction, and introduces misalignment. With its primary focus on explaining the cross-sectional variability of the return process, a risk model can often make do with ballpark estimates and gains little, if at all, from razor sharp estimation of accounting entries. In the King's English, expected returns and risk modelers have different beliefs about the possible impact, or lack thereof, of various economic events on their respective mandates, and the misalignment between the alpha and risk factors is simply an inevitable manifestation of their diverse beliefs.

Second, expected returns and risk model developers can at times take a 482 completely different view on the issue of earnings potential altogether. For 483 instance, some alpha construction techniques use alternative valuation metrics 484 such as different definitions of operating earnings and free cash flow for good 485 reasons. These different measurement choices of the same underlying fundamental 486 metric, namely earnings potential, lead to misalignment between the alpha and risk 487 factors. Another source of misalignment arises from the use of book-to-price (B/P) 488 ratio. Roughly speaking, book value is the accounting profession's estimate of the 489 company's value; it reflects what the company paid for the assets except intangible 490 assets such as goodwill developed internally, but it includes goodwill of subsidiary 491 companies acquired by purchase. This "cost basis" is then adjusted downward by 492 depreciation and amortization in a highly stylized and rigid attempt to reflect the 493 economic depreciation that actually befalls (most) assets. Off balance-sheet items 494 are ignored.

Saxena and Stubbs (2012) applied their AAF methodology to the USER model, 496 running a monthly backtest based on the above strategy in 2001-2009 time period 497 for various values of σ chosen from $\{0.5 \%, 0.6 \%, \ldots, 3.0 \%\}$. For each value of σ, 498 Saxena and Stubbs (2012) ran the backtest in two setups that were identical in all 499 respects except one, namely, only the second setup used the AAF methodology 500 (AAF $=20 \%$). Saxena and Stubbs (2012) used Axioma's fundamental medium 501 horizon risk model (US2AxiomaMH) to model the active risk constraint. Saxena 502 and Stubbs (2012) reported the time series of the misalignment coefficient of alpha, 503 implied alpha, and the optimal portfolio and found that almost $40-60 \%$ of the alpha 504 is not aligned with the risk factors. The alignment characteristics of implied alpha 505 are significantly better than that of alpha. Among other things, this implies that the 506 constraints of the above strategy, especially the long-only constraint, play a proac- 507 tive role in containing the misalignment issue. Saxena and Stubbs (2012) reported 508 that the orthogonal component of both alpha and implied alpha not only has 509 systematic risk but the magnitude of the systematic risk is comparable to the 510 systematic risk associated with a median risk factor in US2AxiomaMH. To sum- 511 marize, the primary purpose of portfolio optimization is to create a portfolio having 512 an optimal risk-adjusted expected return. If a portion of the risk in a portfolio 513 derived from the orthogonal component of implied alpha is not accounted for, then 514 the resulting risk-adjusted expected return cannot be optimal. Saxena and Stubbs 515 (2012) showed the predicted and realized active risk for various risk target levels, 516 noting the significant downward bias in risk prediction when the AAF methodology 517 is not employed. ${ }^{6}$ Saxena and Stubbs (2012) showed the realized risk-return frontier 518

[^43]and reported that using the AAF methodology not only improves the accuracy of risk prediction but also moves the ex-post frontier upwards thereby giving ex-post performance improvements. The distinguishing feature of quantitative investing as a profession is its belief in generating optimal risk-adjusted returns.

Saxena and Stubbs (2012) held that an approach that cannot predict the risk of the portfolio correctly cannot be expected to produce portfolios that are optimal in the ex-post sense. In other words, such an approach compromises the greater goal of Markowitz MV efficiency and yields suboptimal portfolios. The AAF approach, on the other hand, recognizes the possibility of missing systematic risk factors and makes amends to the extent possible without complete recalibration of the risk model that explicitly accounts for the latent systematic risk in alpha factors. In the process of doing so, AAF approach not only improves the accuracy of risk prediction but also partly repairs the lack of efficiency in the optimal portfolio.

Saxena and Stubbs (2012) acknowledged that the AAF approach has three key limitations. First, the AAF construct is based on the assumption that the factor returns associated with the missing factors are uncorrelated with the factor returns associated with the regular factors in the user risk model. The fact that the AAF is orthogonal to the regular factors, by itself, does not imply lack of correlation of factor returns. To see this, note that even though the industry factors derived from the GICS classification scheme are mutually orthogonal, the corresponding factor returns are often correlated. By being correlation agnostic, the AAF approach fails to capture the interaction between factor returns that can be attributed to missing factors and the user risk factors. Second, the AAF approach requires calibration of the volatility parameter which presents additional practical problems. Furthermore, the temporal stationarity of the mentioned volatility parameter is not guaranteed, which introduces additional complications related to dynamic estimation of the volatility parameter. Third, the AAF approach does not use historical data to improve its representation of the missing factors. In other words, it is agnostic to the nature of residual returns which might have useful information regarding missing factors. A natural way to circumvent these problems is to recalibrate the user risk model taking into account the possible sources of latent systematic risk. Saxena and Stubbs (2012) hold that Custom Risk Models (CRM) accomplish exactly that goal. CRM are derived from the user risk model, referred to as the base model, by introducing additional factors with the intent to eliminate various sources of misalignment. The additional factors are referred to as custom risk factors, and the resulting risk models are said to be customized. Construction of CRM involves complete recalibration of the covariance matrix by re-running the cross-sectional regressions, recomputing factor returns attributed to the user and custom risk factors, and using the resulting time series of factor and residual returns to compute the factor-factor covariance matrix and specific risk. To summarize, Saxena and Stubbs (2012) believe that a combination of CRM and AAF approach offers a practical and holistic approach to FAP.

Let us take a final look at the USER data and portfolios using Axioma. If one uses the Axioma Medium Horizon Fundamental Risk Model for analyzing the APT-constructed $(\lambda=200)$ results reported in Guerard et al. (2012), one finds
that asset selection dominates the portfolio returns; factor-based returns are -5.6 564 (\%) whereas specific returns for 16.3%. The asset selection (active) of the APT- 565 estimated USER model is 9.7% with an Information Ratio of 1.12 and a t-statistic of 566 3.68, see Table 7.4. The IRs and t-statistics are similar to those reported in Guerard 567 et al. (2012). Furthermore, what about testing the USER model using higher 568 targeting tracking errors in the Axioma system? We report, in Table 7.5, that the 569 Geometric Means and Sharpe Ratios increase with higher targeted tracking errors 570 while the Information Ratios fall (tracking errors increase more then realized 571 portfolio returns) with USER in the Axioma system. The Geometric Means and 572

Table 7.4 Axioma Fundamental Risk Model attribution of APT Lambda $=200$ Portfolio Returns t4.1 (USER data, January 1999 to December 2009)

Total returns							t4.2
Portfolio						0.095	t4.3
Benchmark						-0.012	t4.4
Active						0.107	t4.5
Local returns	Return	Risk	IR	T-Stat	Beg \# of assets	End \# of assets	t4.6
Portfolio	0.095	0.221	n / a	n/a	94	92	t4.7
Benchmark	-0.012	0.221	n / a	n/a	1854	1878	t4.8
Active	0.107	0.096	1.115	3.683	1898	1922	t4.9

Factor/specific contribution breakdown							t4.10
Factor contribution						-0.056	t4.11
Specific return contribution						0.163	t4.12
Active return						0.107	t4.13
Return decomposition							t4.14
Contributor	Return	Return	Return	Risk	IR	T-Stat	t4.15
Risk-free rate	0.036						t4.16
Portfolio return	0.095						t4.17
Benchmark return	-0.012						t4.18
Active	0.107			0.096	1.115	3.683	t4.19
Market timing		0.000		n / a	n / a	n / a	t4.20
Specific return		0.163		0.063	2.567	8.483	t4.21
Factor contribution		-0.056		0.072	-0.778	-2.571	t4.22
US2Axioma MH.Style			-0.045	0.068	-0.659	-2.178	t4.23
US2Axioma			-0.011	0.032	-0.334	-1.103	t4.24

t4.26 Table 7.4 (continued)

t4.27		Contribution	Avg. Wtd. Exp.	HR	Risk	IR	T-Stat
			Avg. Wtd. Exp.				
t4.26	Contributors to active return by US2AxiomaMH.Style						
t4.27	US2AxiomaMH.Style						
t4.28	US2AxiomaMH.Size	0.042	-1.053	0.557	0.047	0.881	2.911
t4.29	US2AxiomaMH.Medium-Term Momentum	0.026	0.486	0.748	0.021	1.232	4.071
t4.30	US2AxiomaMH.Value	0.010	0.433	0.710	0.008	1.286	4.248
t4.31	US2AxiomaMH.Market Sensitivity	0.000	0.063	0.550	0.012	0.019	0.063
t4.32	US2AxiomaMH.Exchange Rate Sensitivity	0.000	-0.357	0.580	0.007	0.027	0.090
t4.33	US2AxiomaMH.Growth	-0.001	-0.044	0.443	0.002	-0.682	-2.252
t4.34	US2AxiomaMH.Short-Term Momentum	-0.007	0.055	0.405	0.010	-0.735	-2.428
t4.35	US2AxiomaMH.Leverage	-0.011	0.351	0.458	0.008	-1.298	-4.288
t4.36	US2AxiomaMH.Liquidity	-0.046	-1.148	0.351	0.036	-1.269	-4.194
t4.37	US2AxiomaMH.Volatility	-0.057	0.399	0.244	0.022	-2.591	-8.560
t4.38	US2AxiomaMH.Industry						
t4.39	US2AxiomaMH.Computers \& Peripherals	0.009	-0.047	0.473	0.016	0.528	1.744
t4.40	US2AxiomaMH.Communications Equipment	0.008	-0.040	0.458	0.013	0.621	2.050
t4.41	US2AxiomaMH.Pharmaceuticals	0.005	-0.062	0.496	0.016	0.307	1.014
t4.42	US2AxiomaMH.Metals \& Mining	0.004	0.022	0.618	0.010	0.343	1.135
t4.43	US2AxiomaMH.Media	0.003	-0.006	0.565	0.005	0.758	2.505
t4.44	US2AxiomaMH.Energy Equipment \& Services	0.003	-0.017	0.473	0.007	0.485	1.603
t4.45	US2AxiomaMH.Industrial Conglomerates	0.002	-0.044	0.450	0.012	0.193	0.637
t4.46	US2AxiomaMH.Multiline Retail	0.002	-0.016	0.542	0.006	0.383	1.266
t4.47	US2AxiomaMH.Food \& Staples Retailing	0.002	-0.020	0.527	0.005	0.443	1.465
t4.48	US2AxiomaMH.Specialty Retail	0.002	0.011	0.611	0.007	0.306	1.011
t4.49	US2AxiomaMH.Aerospace \& Defense	0.002	-0.013	0.450	0.005	0.436	1.441
t4.50	US2AxiomaMH.Beverages	0.002	-0.020	0.504	0.006	0.335	1.108
t4.51	US2AxiomaMH.Oil, Gas \& Consumable Fuels	0.002	0.018	0.542	0.007	0.232	0.768
t4.52	US2AxiomaMH.Machinery	0.002	-0.002	0.534	0.003	0.523	1.730
t4.53	US2AxiomaMH.Household Products	0.002	-0.020	0.466	0.005	0.340	1.122
t4.54	US2AxiomaMH.IT Services	0.001	-0.014	0.473	0.004	0.307	1.014
t4.55	US2AxiomaMH.Tobacco	0.001	-0.008	0.489	0.003	0.292	0.966
t4.56	US2AxiomaMH.Hotels, Restaurants \& Leisure	0.001	-0.003	0.519	0.004	0.252	0.831
t4.57	US2AxiomaMH.Electrical Equipment	0.001	-0.005	0.527	0.002	0.460	1.520

(continued)

Table 7.4 (continued)
t4.58

	Contribution	Avg. Wtd. Exp.	HR	Risk	IR	T-Stat	t4.59
US2AxiomaMH.Biotechnology	0.001	0.014	0.527	0.006	0.128	0.424	t4.60
US2AxiomaMH.Personal Products	0.001	-0.005	0.534	0.001	0.637	2.105	t4.61
US2AxiomaMH.Road \& Rail	0.001	-0.003	0.450	0.002	0.292	0.964	t4.62
US2AxiomaMH.Independent Power Producers \& Energy Traders	0.001	-0.002	0.443	0.001	0.589	1.947	t4.63
US2AxiomaMH.Construction \& Engineering	0.000	0.003	0.443	0.002	0.277	0.917	t4.64
US2AxiomaMH.Diversified Consumer Services	0.000	0.000	0.489	0.002	0.135	0.447	t4.65
US2AxiomaMH.Containers \& Packaging	0.000	0.001	0.481	0.002	0.119	0.395	t4.66
US2AxiomaMH.Gas Utilities	0.000	0.001	0.496	0.001	0.140	0.461	t4.67
US2AxiomaMH.Health Care Technology	0.000	0.000	0.382	0.000	0.674	2.227	t4.68
US2AxiomaMH.Air Freight \& Logistics	0.000	-0.006	0.473	0.002	0.058	0.190	t4.69
US2AxiomaMH.Chemicals	0.000	0.007	0.573	0.003	0.030	0.099	t4.70
US2AxiomaMH.Water Utilities	0.000	0.000	0.481	0.000	0.088	0.292	t4.71
US2AxiomaMH.Transportation Infrastructure	0.000	0.000	0.076	0.000	0.481	1.589	t4.72
US2AxiomaMH.Electric Utilities	0.000	0.009	0.496	0.005	-0.001	-0.004	t4.73
US2AxiomaMH.Semiconductors \& Semiconductor Equipment	0.000	-0.030	0.473	0.013	-0.006	-0.019	t4.74
US2AxiomaMH.Office Electronics	0.000	-0.001	0.412	0.001	-0.171	-0.565	t4.75
US2AxiomaMH.Consumer Finance	0.000	-0.005	0.481	0.004	-0.032	-0.107	t4.76
US2AxiomaMH.Airlines	0.000	0.008	0.489	0.005	-0.028	-0.094	t4.77
US2AxiomaMH.Construction Materials	0.000	0.000	0.489	0.001	-0.252	-0.833	t4.78
US2AxiomaMH.Diversified Financial Services	0.000	-0.002	0.450	0.002	-0.139	-0.458	t4.79
US2AxiomaMH.Food Product	0.000	0.008	0.565	0.004	-0.057	-0.189	t4.80
US2AxiomaMH.Professional Services	0.000	-0.001	0.443	0.001	-0.346	-1.144	t4.81
US2AxiomaMH.Distributors	0.000	0.001	0.527	0.000	-0.779	-2.575	t4.82
US2AxiomaMH.Multi-Utilities	0.000	0.007	0.473	0.004	-0.130	-0.429	t4.83
US2AxiomaMH.Software	-0.001	-0.033	0.450	0.010	-0.057	-0.190	t4.84
US2AxiomaMH.Life Sciences Tools \& Services	-0.001	-0.001	0.435	0.001	-0.538	-1.779	t4.85
US2AxiomaMH.Building Products	-0.001	0.003	0.489	0.002	-0.265	-0.876	t4.86
US2AxiomaMH.Thrifts \& Mortgage Finance	-0.001	0.003	0.489	0.004	-0.151	-0.499	t4.87
US2AxiomaMH.Marine	-0.001	0.000	0.389	0.000	-1.207	-3.990	t4.88
US2AxiomaMH.Real Estate	-0.001	0.013	0.473	0.008	-0.080	-0.266	t4.89

(continued)
t4.90 Table 7.4 (continued)

t5.1 Table 7.5 The USER model with higher targeted tracking errors

Returns, GLER, is:

$$
\begin{align*}
\mathrm{TR}_{t+1}= & a_{0}+a_{1} \mathrm{EP}_{t}+a_{2} \mathrm{BP}_{t}+a_{3} \mathrm{CP}_{t}+a_{4} \mathrm{SP}_{t}+a_{5} \mathrm{REP}_{t}+a_{6} \mathrm{RBP}_{t} \\
& +a_{7} \mathrm{RCP}_{t}+a_{8} \mathrm{RSP}_{t}+a_{9} \mathrm{CTEF}_{t}+a_{10} \mathrm{PM}_{t}+e_{t}, \tag{7.37}
\end{align*}
$$

603

604

605

Sharpe Ratios are higher in the Axioma 20-factor principal components estimated Statistical Risk Model than in the Axioma Fundamental Risk Model.

An Global Expected Returns Model: Why Everyone Should Diversify Globally, 1998-2009

Guerard et al. (2012) extended a stock selection model originally developed and estimated in Guerard and Takano (1991) and Bloch et al. (1993), adding a Brushbased price momentum variable, taking the price at time $t-1$ divided by the price 12 months ago, $t-12$, denoted PM, and the consensus (I/B/E/S) analysts' earnings forecasts and analysts' revisions composite variable, CTEF, to the stock selection model. Guerard et al. (2012) referred to the stock selection model as a United States Expected Returns (USER) model. We can estimate an expanded stock selection model to use as an input of expected returns in an optimization analysis. The universe for all analysis consists of all securities on Wharton Research Data Services (WRDS) platform from which we download the I/B/E/S database, and the Global Compustat databases. The I/B/E/S database contains consensus analysts' earnings per share forecast data and the Global Compustat database contains fundamental data, i.e., the earnings, book value, cash flow, depreciation, and sales data, used in this analysis for the January 1990 to December 2009 time period. The information coefficient, IC, is estimated as the slope of a regression line in which ranked subsequent returns are expressed as a function of the ranked strategy, at a particular point of time. The high fundamental variables, earnings, bookvalue, cash flow, and sales produce higher ICs in the global universe than in the USA universe where USER was estimated, see Table 7.6. Moreover, analysts' 1-year-ahead and 2year ahead revisions, RV1 and RV2, respectively, were much lower in global markets, than USA market. Breadth, BR, and forecasted earnings yields, FEP, were positive but less than in the USA market. The ICs on the analysts' forecast variable, CTEF, and price momentum variable, PM, were lower than in the USA universe.

The stock selection model estimated in this study, denoted as Global Expected Returns, GLER, is:
where $\mathrm{EP}=$ [earnings per share]/[price per share] $=$ earnings-price ratio; $\mathrm{BP}=[$ book value per share $] /[$ price per share $]=$ book-price ratio; $\mathrm{CP}=$ [cash flow per share]/[price per share] = cash flow-price ratio; $\mathrm{SP}=$ [net sales per share] $/[$ price per share $]=$ sales-price ratio; $\mathrm{REP}=$ [current EP ratio]/[average EP ratio over the past 5 years]; RBP = [current BP ratio]/[average BP ratio over the past 5 years]; $\mathrm{RCP}=[$ current CP ratio $] /[$ average CP ratio over the past 5 years]; $\mathrm{RSP}=$ [current

Table 7.6 Global composite model component ICs

January 1990 to September 2009		t6.1
Variable	IC	t6.2
EP	0.048	t6.3
BP	0.019	t6.4
CP	0.042	t6.5
SP	0.008	t6.6
DP	0.058	t6.7
RV1	0.011	t6.8
RV2	0.019	t6.9
BR1	0.026	t6.10
BR2	0.024	t6.11
FEP1	0.034	t6.12
FEP2	0.029	t6.13
CTEF	0.023	t6.14
PM	0.022	t6.15
EWC	0.043	t6.16
GLER	0.042	t6.17

SP ratio]/[average SP ratio over the past 5 years]; CTEF $=$ consensus earnings per 609 share $\mathrm{I} / \mathrm{B} / \mathrm{E} / \mathrm{S}$ forecast, revisions and breadth; $\mathrm{PM}=$ price momentum; and $e=610$ randomly distributed error term.

611
The GLER model also is estimated using a weighted latent root regression, 612 WLRR, analysis on (7.1) to identify variables statistically significant at the $10 \% 613$ level; uses the normalized coefficients as weights; and averages the variable 614 weights over the past 12 months. The 12-month smoothing is consistent with the 615 four-quarter smoothing in Guerard and Takano (1991) and Bloch et al. (1993). 616 While EP and BP variables are significant in explaining returns, the majority of the 617 forecast performance is attributable to other model variables, namely the relative 618 earnings-to-price, relative cash-to-price, relative sales-to-price, price momentum, 619 and earnings forecast variables. The consensus earnings forecasting variable, 620 CTEF, and the price momentum variable, PM, dominate the composite model, as 621 is suggested by the fact that the variables account for 48% of the model average 622 weights, slightly higher than the two variables combining for 44% of the weights in 623 the USER model. The time-average value of estimated coefficients:

a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	a_{6}	a_{7}	a_{8}	a_{9}	a_{10}
0.048	0.069	0.044	0.047	0.050	0.032	0.039	0.086	0.216	0.257

In terms of information coefficients, ICs, the use of the WLRR procedure 625 produces a virtually identical IC for the models during the 1980-2009 time period, 626 0.042 , versus the equally-weighted IC of 0.043 . The GLER model, has compared to 627 the USER model in Guerard et al. (2012) has approximately the same ICs. The IC 628 test of statistical significance can be referred to as a Level I test. Further evidence on 629 the anomalies is found in Levy (1999).

643

We report that in the Axioma GLER simulations, as with USER, the Axioma Statistical Model dominates the Axioma Fundamental Model and AAF dominates the non-AAF Frontiers in terms of Geometric Means and Sharpe Ratios with the GLER Model (see Table 7.7). ${ }^{7}$ Moreover, in Table 7.8, lower turnover (4\%, monthly) allows the AAF factor to increase. An AAF of 30% is preferred to AAF levels of 10 or 70%, for most tracking errors and turnover. The GLER model riskreturn frontier demonstrates the effectiveness of the USER analysis in global markets. Finally, if one graphs portfolio excess returns relative to portfolio tracking errors, one sees in Chap. 7.2 that the Axioma Statistical Risk Model frontier with AAF $=30 \%$ dominates the Axioma Statistical Risk Model frontier without AAF. Furthermore, the Axioma Statistical Risk Model frontier dominates the Axioma Fundamental Risk Model frontier (with and without AAF).

Global Investing in the World of Business, 1999-2011

In the world of business, one does not access academic databases annually, or even quarterly. Most industry analysis uses FactSet database and the Thomson Financial (I/B/E/S) earnings forecasting database. We can estimate (7.37) for all securities on the Thomson Financial and FactSet databases, some 46,550 firms in December 2011. We can decompose this universe into USA, Non-USA, and global securities. We can refer to these universes as the USER, NUSER, and GLER databases, respectively. One can estimate (7.37) models for index constituents in the three growth universes: the Russell 3000 Growth (R3G) universe; the MSCI All Country World ex USA Growth (ACWexUSG) universe; and the All Country World Growth (ACWG) universe. The R3G analysis is shown in Table 7.9; the ACWexUSG analysis is reported in Table 7.10; and ACWG universe analysis is shown in Table 7.11. The GLER conclusions are confirmed: (1) the Axioma Statistical Model dominates the Axioma Fundamental Model and (2) AAF dominates the non-AAF Frontiers in terms of Information Ratios and Sharpe Ratios with the models. ${ }^{8}$ An examination of Tables 7.9, 7.10, and 7.11, shows that Non-USA and global models produce higher Sharpe Ratios and higher Information Ratios than the USER model in the 1999-2011 period. Non-USA and global stocks are more inefficient than USA stocks, a result reported in Guerard (2012). If we graph the USER, NUSER, and GLER active risks and active returns, we find that GLER and

[^44]t7.1 Table 7.7 An AAF analysis of the Global Expected Returns (GLER) model

Initial Axioma WRDS GLER Backtest				-								
GLER model-global variation of USER												
Universe: ACWG												
Simulation period: January 1999 to March 2009												
Transactions costs: 150 basis points each way, respectively												
			No AAF					AAF				
Return model	Risk model	Tracking Error	Sharpe Ratio	Information Ratio	Ann. active return	Ann. active risk	N	Sharpe Ratio	Information Ratio	Ann. active return	Ann. active risk	N
GLER	STAT	4	0.448	1.247	8.72	6.99	216	0.290	1.159	4.79	4.14	516
		5	0.511	1.119	10.52	8.77	204	0.359	1.230	6.37	5.18	442
		6	0.516	1.089	11.02	10.12	188	0.397	1.145	7.43	6.49	383
		7	0.552	1.074	12.29	11.44	185	0.464	1.179	9.09	7.71	340
		8	0.605	1.111	14.14	12.73	177	0.532	1.236	10.94	8.86	304
	FUND	4	0.286	0.882	4.97	5.63	221	0.230	1.009	3.53	3.50	488
		5	0.320	0.841	5.84	6.94	199	0.269	0.971	4.45	4.59	414
		6	0.356	0.827	6.91	6.91	196	0.306	0.952	5.39	5.66	357
		7	0.414	0.885	8.45	8.45	188	0.344	0.946	6.36	6.72	318
		8	0.427	0.845	8.99	8.99	182	0.407	1.012	7.97	7.88	291

Table 7.8 An AAF/turnover analysis of the Global Expected Returns (GLER) model

Initial Axioma WRDS GLER Backtest																
GLER model-global variation of USER																
Universe: ACWG																
Axioma Statistical Risk Model																
Simulation period: January 1999 to December 2011																
Transactions costs: 150 basis points each way, respectively																
		AAF $=$					AAF $=$					AAF $=$				
Return model	Tracking Error	Sharpe Ratio	Information Ratio	Ann. active return	Ann. active risk		Sharpe Ratio	Information Ratio	Ann. active return	Ann. active risk	N	Sharpe Ratio	Information Ratio	Ann. active return	Ann. active risk	N
Combol0F																
TO $=4$	4	0.490	1.491	9.37	6.29	444	0.413	1.407	7.64	5.43	334	0.287	1.289	4.29	3.66	601
	5	0.531	1.291	10.68	8.19	522	0.479	1.386	9.35	6.74	289	0.355	1.335	6.24	4.71	504
	6	0.569	1.217	11.90	9.84	637	0.519	1.267	10.61	8.37	526	0.397	1.261	7.37	5.84	439
	7	0.597	1.187	12.87	8.19	214	0.597	1.304	12.67	9.72	598	0.476	1.310	9.33	7.12	387
	8	DNC					0.609	1.249	13.50	10.81	229	0.531	1.315	10.84	8.25	347
$\mathrm{TO}=8$	4	0.426	1.215	8.14	6.71	228	0.353	1.129	6.39	5.66	294	0.279	1.203	4.53	3.77	607
	5	0.475	1.146	9.65	8.43	203	0.419	1.147	7.96	6.94	243	0.342	1.241	5.95	4.79	513
	6	0.519	1.104	11.07	10.03	193	0.494	1.178	9.88	8.38	214	0.393	1.232	7.24	5.87	446
	7	0.555	1.084	12.31	11.35	195	0.554	1.182	11.59	9.80	187	0.435	1.181	8.42	7.13	389
	8	0.615	1.141	13.94	12.22	401	0.591	1.193	13.12	11.00	185	0.501	1.222	10.06	8.32	359
$\mathrm{TO}=12$	4	0.413	1.142	7.86	6.88	211	0.351	1.122	6.35	5.65	294	0.263	1.198	4.22	3.77	538
	5	0.476	1.147	9.47	8.25	177	0.418	1.141	7.96	6.98	243	0.328	1.170	5.67	4.85	468
	6	0.554	1.192	11.51	9.66	163	0.493	1.175	9.82	8.36	214	0.381	1.177	6.95	5.91	481
	7	0.581	1.176	$12 . .82$	10.90	162	0.559	1.198	11.72	9.78	192	0.424	1.147	8.11	7.07	366
	8	0.622	1.157	14.16	12.24	171	0.601	1.197	13.22	11.85	82	0.459	1.002	9.09	8.25	335

$\overline{D N C}$ did not converge

Char. 7.2 Dominance of the Statistical Risk Model and Alpha Alignment Factors relative to Fundamental Risk Models and No Alpha Alignment Factors in the United States Equity Market, 1999-2009

NUSER dominate USER (see Char. 7.3). NUSER dominates GLER at an 8\% 663 tracking error.

664
Let us take a closer look at the application at the Systematic Tracking Error 665 (STE) optimization technique reported in Wormald and van der Merwe (2012). Let 666 us take the FactSet and Thomson Financial universe for the 1990-2011 period and 667 reduce it by requiring at least two analysts to cover stocks. The universe goes from 668 466,550 to approximately 7,500 stocks. We will refer to this universe as the 669 GLER2012 universe. If one runs STE optimization with (1) No Risk Constraints; 670 (2) 8% monthly turnover; (3) 150 basis points of transactions costs, each way; (4) a 671 threshold position weight of 35 basis points; (5) and a maximum security weight of 672 4%; (5) long-only portfolio such that the minimum weight is 0 ; and one uses lambda 673 values of 500 and 200, then one produces portfolios producing higher Geometric 674 Means, Sharpe Ratios, and Information Ratios than the universe benchmark (see 675 Table 7.12). The Axioma attribution reveals statistical significant active return 676 (see Table 7.13). The FactSet GLER regression weights are graphed in Char. 7.4. 677 In the FactSet universe, CTEF and PM amount to only 38% of the GLER model 678 weights. PM has the largest weight, at about 24%.

There should be three results from the USER data analysis. An asset manager 680 should set tracking errors at 8% to maximize the Geometric Mean, Sharpe Ratio, 681 and Information Ratio; higher lambdas are preferred to lower lambdas (use at least 682 an APT lambda of 100); and the Alpha Alignment Factor is most appropriate. 683
Table 7.9 Axioma analysis of Russell 3000 growth constituents

Initial Axioma Ranked USA Backest												
USER model												
Universe: R3G												
Simulation period: January 1999 to December 2011												
Transactions costs: 150 basis points each way, respectively												
			NoAAF					AAF				
Return model	Risk model	Tracking Error	Sharpe Ratio	Information Ratio	Ann. active return	Ann. active risk	N	Sharpe Ratio	Information Ratio	Ann. active return	Ann. active risk	N
$\begin{aligned} & \text { USER } \\ & \text { model } \end{aligned}$	STAT	4	0.303	0.734	5.49	7.49	177	0.300	0.842	5.20	6.18	317
		5	0.309	0.650	5.78	8.90	138	0.336	0.835	6.07	7.29	242
		6	0.288	0.548	5.50	10.05	109	0.343	0.767	6.41	8.40	192
		7	0.301	0.536	6.04	11.25	91	0.345	0.700	6.70	9.59	156
		8	0.338	0.586	7.12	12.14	77	0.345	0.640	6.83	10.64	128
	FUND	4	0.239	0.643	4.09	6.35	188	0.252	0.767	4.27	5.55	323
		5	0.276	0.646	5.01	7.75	148	0.275	0.715	4.84	6.77	257
		6	0.311	0.657	5.96	9.08	122	0.305	0.720	5.65	7.84	205
		7	0.298	0.598	5.88	10.15	106	0.305	0.644	5.81	9.03	202
		8	0.301	0.547	6.16	11.26	91	0.327	0.645	6.49	10.07	140

t10.1 Table 7.10 Axioma analysis of all ex USA growth index constituents

t10.2	Initial Axioma Ranked NUSG Backtest												
t10.3	NUSER model-Non-USA variation of USER												
t10.4	Universe: ACWexUSG												
t10.5	Simulation period: January 1999 to December 2011												
t10.6	Transactions costs: 150 basis points each way, respectively												
t10.7				RANK									
t10.8				NoAAF					AAF				
t10.9	Return model	Risk model	Tracking Error	Sharpe Ratio	Information Ratio	Ann. active return	Ann. active risk	N	Sharpe Ratio	Information Ratio	Ann. active return	Ann. active risk	N
t10.10	NUSER	STAT	4	0.487	1.245	8.15	6.55	133	0.446	1.380	7.01	5.08	242
t10.11			5	0.546	1.228	9.79	7.97	102	0.501	1.377	8.43	6.12	182
t10.12			6	0.679	1.471	13.07	8.88	81	0.537	1.312	9.48	7.22	140
t10.13			7	0.719	1.450	14.53	10.02	66	0.618	1.394	11.56	8.29	113
t10.14			8	0.782	1.514	16.41	10.84		0.718	1.538	14.22	9.24	91
t10.15		FUND	4	0.445	1.271	6.68	5.25	153	0.405	1.331	5.79	4.35	244
t10.16			5	0.473	1.133	7.57	6.68	118	0.470	1.351	7.25	5.37	240
t10.17			6	0.557	1.232	9.66	7.84	95	0.518	1.340	8.42	6.43	152
t10.18			7	0.652	1.378	11.99	8.70	78	0.572	1.309	9.83	7.51	121
t10.19			8	0.725	1.465	14.06	9.60	66	0.640	1.374	11.74	8.54	100

t11.1 Table 7.11 Axioma analysis of all country world growth index constituents

GLER model-global variation of USER												
Universe: ACWG												
Simulation period: January 1999 to December 2011												
Transactions costs: 150 basis points each way, respectively												
			RANKE									
			NoAAF		-			AAF				
Return model	Risk model	Tracking Error	Sharpe Ratio	Information Ratio	Ann. active return	Ann. active risk	N	Sharpe Ratio	Information Ratio	Ann. active return	Ann. active risk	N
GLER	STAT	4	0.554	1.475	9.99	6.78	144	0.489	1.507	8.51	5.65	261
		5	0.602	1.385	11.38	8.24	110	0.554	1.521	10.09	6.63	197
		6	0.656	1.409	13.25	9.40	87	0.614	1.502	11.65	7.76	153
		7	0.715	1.454	14.94	10.28	70	0.638	1.415	12.63	8.93	120
		8	0.748	1.451	16.20	11.16		0.672	1.385	14.00	10.11	95
	FUND	4	0.382	1.091	6.08	5.57	163	0.373	1.231	5.82	4.73	272
		5	0.460	1.151	7.73	6.72	129	0.438	1.260	7.19	5.71	210
		6	0.521	1.158	9.33	8.06	104	0.492	1.255	8.40	6.69	167
		7	0.582	1.217	11.02	9.06	83	0.563	1.294	10.08	7.79	137
		8	0.647	1.281	12.75	9.95	71	0.602	1.265	11.36	8.99	110

Char. 7.3 It paid to be an International Investor, 1999-2011
t12.1
t12.2
t12.3
t12.4 t12.5

Table 7.13 Portfolio GLER L500 results
t13.1

Table 7.13 (continued)
t13.64

	Contribution	Avg. Wtd. Exp.	HR	Risk	IR	T-Stat	t13.65
WW21AxiomaMH.Communications Equipment	0.001	-0.018	0.519	0.002	0.507	1.521	t13.66
WW21AxiomaMH.Wireless Telecommunication Services	0.001	0.031	0.565	0.002	0.497	1.492	t13.67
WW21AxiomaMH.Health Care Providers \& Services	0.001	0.008	0.537	0.003	0.291	0.874	t13.68
WW21AxiomaMH.Thrifts \& Mortgage Finance	0.001	0.001	0.481	0.001	0.974	2.923	t13.69
WW21AxiomaMH.Transportation Infrastructure	0.001	0.009	0.509	0.001	0.869	2.607	t13.70
WW21AxiomaMH.Internet \& Catalog Retail	0.001	0.001	0.500	0.001	0.580	1.741	t13.71
WW21AxiomaMH.Internet Software \& Services	0.001	-0.003	0.537	0.001	0.594	1.782	t13.72
WW21AxiomaMH.Electronic Equipment, Instruments \& Components	0.000	-0.006	0.519	0.001	0.793	2.380	t13.73
WW21AxiomaMH.Consumer Finance	0.000	-0.001	0.519	0.001	0.547	1.642	t13.74
WW21AxiomaMH.Diversified Telecommunication Services	0.000	0.022	0.481	0.002	0.157	0.471	t13.75
WW21AxiomaMH.Containers \& Packaging	0.000	0.003	0.574	0.001	0.533	1.598	t13.76
WW21AxiomaMH.Professional Services	0.000	0.001	0.537	0.001	0.432	1.297	t13.77
WW21AxiomaMH.Health Care Technology	0.000	0.007	0.315	0.001	0.254	0.761	t13.78
WW21AxiomaMH.Aerospace \& Defense	0.000	-0.007	0.481	0.001	0.180	0.539	t13.79
WW21AxiomaMH.Commercial Banks	0.000	0.003	0.472	0.001	0.161	0.484	t13.80
WW21AxiomaMH.Office Electronics	0.000	-0.005	0.528	0.000	0.420	1.260	t13.81
WW21AxiomaMH.Hotels, Restaurants \& Leisure	0.000	0.005	0.583	0.001	0.165	0.494	t13.82
WW21AxiomaMH.Software	0.000	-0.033	0.463	0.003	0.053	0.159	t13.83
WW21AxiomaMH.Computers \& Peripherals	0.000	-0.017	0.463	0.002	0.057	0.171	t13.84
WW21AxiomaMH.Textiles, Apparel \& Luxury Goods	0.000	-0.002	0.593	0.001	0.215	0.646	t13.85
WW21AxiomaMH.Construction \& Engineering	0.000	-0.004	0.472	0.000	0.296	0.889	t13.86
WW21AxiomaMH.Food Products	0.000	-0.010	0.491	0.001	0.103	0.308	t13.87
WW21AxiomaMH.Construction Materials	0.000	0.000	0.509	0.000	0.138	0.414	t13.88
WW21AxiomaMH.Multiline Retail	0.000	0.001	0.472	0.001	0.039	0.116	t13.89
	0.000	-0.008	0.519	0.001	0.048	0.143	t13.90

t13.91 Table 7.13 (continued)

t13.92	Contribution	Avg. Wtd. Exp.	HR	Risk	IR	T-Stat
WW21AxiomaMH.Air Freight \& Logistics						
t13.91 WW21AxiomaMH.Water Utilities	0.000	0.001	0.380	0.000	0.012	0.037
Durables						
\& Semiconductor Equipment						
t13.94 WW21AxiomaMH.Building Products	0.000	0.004	0.500	0.001	-0.121	-0.363
t13.95 WW21AxiomaMH.Leisure Equipment \& Products	0.000	0.000	0.546	0.000	-0.246	-0.739
Equipment						
t13.97 WW21AxiomaMH.Trading Companies \& Distributors	0.000	0.002	0.435	0.000	-0.244	-0.733
Power Producers \& Energy Traders						
t13.99 WW21AxiomaMH.Diversified Consumer Services	0.000	-0.001	0.509	0.000	-0.389	-1.167
t13.100WW21AxiomaMH.Industrial Conglomerates	0.000	-0.013	0.463	0.001	-0.177	-0.531
t13.10WWW21AxiomaMH.Personal Products	0.000	-0.006	0.481	0.000	-0.329	-0.986
t13.102WW21AxiomaMH.Health Care Equipment \& Supplies	0.000	0.003	0.472	0.001	-0.126	-0.377
t13.103WW21AxiomaMH.Energy Equipment \& Services	0.000	-0.009	0.481	0.002	-0.083	-0.250
t13.104WW21AxiomaMH.Gas Utilities	0.000	-0.001	0.481	0.000	-0.880	-2.641
t13.105WW21AxiomaMH.Distributors	0.000	0.010	0.435	0.001	-0.265	-0.795
t13.106WW21AxiomaMH.Household	0.000	-0.017	0.565	0.002	-0.160	-0.480
Products						
t13.10WW21AxiomaMH.Life Sciences Tools \& Services	0.000	0.000	0.241	0.001	-0.377	-1.131
t13.108WW21AxiomaMH.Multi-Utilities	0.000	-0.006	0.556	0.001	-0.416	-1.247
t13.109WW21AxiomaMH.Automobiles	0.000	-0.004	0.537	0.001	-0.280	-0.839
t13.110WW21AxiomaMH.Diversified Financial Services	0.000	0.015	0.500	0.001	-0.261	-0.783
t13.11 WW21AxiomaMH.Commercial Services \& Supplies	0.000	0.009	0.528	0.001	-0.437	-1.311
t13.112WW21AxiomaMH.IT Services	0.000	-0.007	0.509	0.001	-0.288	-0.865
t13.113WW21AxiomaMH.Insurance	0.000	0.032	0.491	0.003	-0.128	-0.383
t13.114WW21AxiomaMH.Chemicals	0.000	0.005	0.463	0.001	-0.341	-1.023
t13.115WW21AxiomaMH.Oil, Gas \& Consumable Fuels	0.000	0.000	0.407	0.003	-0.123	-0.370
t13.116WW21AxiomaMH.Capital Markets	0.000	-0.005	0.463	0.001	-0.463	-1.389
t13.117WW21AxiomaMH.Road \& Rail	0.000	-0.010	0.444	0.001	-0.505	-1.514
						tinued)

Table 7.13 (continued)

	Avg.							
	Contribution	Wtd. Exp.	HR	Risk	IR	T-Stat	t13.119	
WW21AxiomaMH.Airlines	-0.001	0.031	0.444	0.005	-0.120	-0.361	t13.120	
WW21AxiomaMH.Specialty Retail	-0.001	-0.004	0.463	0.002	-0.368	-1.104	t 13.121	
WW21AxiomaMH.Real Estate	-0.001	0.010	0.519	0.001	-0.708	-2.125	t 13.122	
\quad Management \& Development								
WW21AxiomaMH.Beverages	-0.001	-0.022	0.407	0.002	-0.566	-1.697	t 13.123	
WW21AxiomaMH.Biotechnology	-0.001	0.033	0.509	0.005	-0.206	-0.619	t 13.124	
WW21AxiomaMH.Machinery	-0.001	-0.009	0.343	0.001	-1.589	-4.767	t 13.125	
WW21AxiomaMH.Auto	-0.001	0.002	0.509	0.001	-1.237	-3.712	t 13.126	
\quad Components								
WW21AxiomaMH.Marine	-0.001	0.016	0.426	0.004	-0.276	-0.828		
WW21AxiomaMH.Paper \& Forest	-0.001	0.006	0.556	0.001	-0.799	-2.396		
\quad Products								
WW21AxiomaMH.Food \& Staples	-0.001	-0.025	0.500	0.002	-0.596	-1.789		
\quad Retailing								
WW21AxiomaMH.Electric Utilities	-0.001	0.005	0.463	0.001	-1.008	-3.025		
WW21AxiomaMH.Tobacco	-0.001	-0.011	0.407	0.001	-1.051	-3.153		

Char. 7.4 Relative global model component weights, 1990-2011

Conclusions

We addressed several issues in portfolio construction and management with the 685 Guerard et al. (2012) USER data. First, we report that the Markowitz 686 mean-variance (MV) optimization technique dominates the Enhanced Index- 687 Tracking optimization technique at most security weight ranges. Second, we report 688

References

APT Analytics Guide (2011), SunGard APT, London www.sungard.com/apt/learnmore/
that the Systematic Tracking Error optimization technique reported Wormald and van der Merwe (2011) is very effective in USA and global markets. Finally, we report that the Saxena and Stubbs (2012) Axioma Alpha Alignment Factor (AAF) is appropriate for USER and GLER Data and that the Axioma Statistical Risk Model dominates the Axioma Fundamental Model. The Markowitz approach to portfolio construction and management is 60 years old and remains an integral tool of investment research. Earnings forecasts play a very important role in identifying mispriced securities.

Bloch, M., J.B. Guerard Jr., H.M. Markowitz, P. Todd, and G. L. Xu. 1993. "A Comparison of Some Aspects of the U.S. and Japanese Equity Markets." Japan \& the World Economy 5, 3-26.
Blin, J.-M., S. Bender, and J.B.Guerard Jr. 1997. "Earnings Forecasts, Revisions and Momentum in the Estimation of Efficient Market-Neutral Japanese and U.S. Portfolios." In Research in Finance 15, edited by A. Chen.
Chopra, V. K and W.T. Ziemba. 1993 "The Effects of Errors in Means, Variances and Covariances on Optimal Portfolio Choice", Journal of Portfolio Management 19, 2.
Connor, G. and R.A. Korajczyk. 1988. "Risk and Return in an Equilibrium APT: Application of a New Test Methodology." Journal of Financial Economics 21, 255-289.
Connor, G. and R.A. Korajczyk (1993). "A Test for the Number of Factors in an Approximate Factor Model." Journal of Finance 48, 1263-1291.
Connor, G. and R. A. Korajczyk. 1995. "The Arbitrage Pricing Theory and Multifactor Models of Asset Returns", Chapter 4 of Finance, Handbooks in Operations Research and Management Science, Volume 9, ed R. Jarrow, V. Maksimovic, and W. Ziemba. Amsterdam: North Holland, 1995
Dharan, B.G.. 1997. Magnitude of goodwill in U.S. corporate financial statements. In Stephen A. Zeff and Bala G. Dharan, Editors, Readings and Notes on Financial Accounting. New York: McGraw-Hill, Inc.
Disatnik, D. and S. Benninga (2007) "Shrinking the Covariance Matrix-Simpler is Better", Journal of Portfolio Management 33, no 4, 56-63.
DeMiguel, V., L. Garlappi, F. J. Nogales and R. Uppal (2008), "A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms", Management Science 55 No.5, 798-812.
Elton, E.J., M.J. Gruber, and M.N. Gültekin. 1981. "Expectations and Share Prices." Management Science 27, 975-987.
Elton, E.J., M.J. Gruber, S.J. Brown, and W.N. Goetzman. 2007. Modern Portfolio Theory and Investment Analysis. John Wiley \& Sons, Inc., Seventh Edition.
Fabozzi,F., F. Gupta \& Harry Markowitz. 2002a. "The Legacy of Modern Portfolio Theory" Journal of Investing, 7-22.
Fabozzi, F., F. Jones \& R. Vardharaj. 2002. "Multi-Factor Equity Risk Models", in Fabozzi \& Markovitz eds The Theory and Practise of Investment Management. New York: John Wiley \& Sons.
Fama,E.F. and K.R. French. 2008. "Dissecting Anomalies". Journal of Finance 63, 1653-1678.
Fama, E.F., and K.R. French. 1996. "Multifactor Explanations of Asset Pricing Anomalies". Journal of Finance 51, 55-84.
Fama, E.F. and K.R. French. 1995. "Size and the Book-to-Market Factors in Earnings and Returns". Journal of Finance 50:131-155.

Fama, E.F. and K.R. French. 1992. "Cross-Sectional Variation in Expected Stock Returns". 736 Journal of Finance 47, 427-465. 737
Grinhold, R. and R. Kahn. 2000. Active Portfolio Management New York: McGraw-Hill/Irwin, 738 Second Edition.
Guerard, J.B. Jr., M Takano, and Y. Yamane. 1993. "The Development of Efficient Portfolios in 740 Japan with Particular Emphasis on Sales and Earnings Forecasting." Annals of Operations 741 Research 45, 91-108.
Guerard, J.B., Jr., M.N. Gultekin, and G. Xu. 2012. "Investing with Momentum: The Past, Present, 743 and Future", Journal of Investing 21, 68-80. 744
Guerard, J.B., Jr. 2010. Global Earnings Forecast Efficiency (2010), McKinley Capital, presented 745 at $30^{\text {th }}$ International Symposium on Forecasting, June 2010.
Jagannathan, R., and T. Ma. 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong 747 Constraints Helps", Journal of Finance 58, 1651-1684.
Kolbert, F. and L. Wormald. 2010. Chapter 1 in S. Satchell, Ed. Optimizing Optimization : The 749 Next Generation of Optimization Applications and Theory, Amsterdam: Elsevier Quantitative 750 Finance Series.

751
Ledoit, O. and M. Wolf. 2003."Improved Estimation of the Covariance Matrix of Stock Returns 752 with an Application to Portfolio Selection", Journal of Empirical Finance, Volume 10, Issue 5, 753 Dec 2003, pages 603-621 754
Ledoit, O. and M. Wolf. 2004. "Honey, I Shrunk the Sample Covariance Matrix", Journal of 755 Portfolio Management 31, Number 1, Fall 2004. 756
Lee, J.H. and D. Stefek. 2008. "Do Risk Factors Eat Alphas?"Journal of Portfolio Management 757 34, 4, 12-25.

758
Mulvey, J. W. Chang Kim, \& M. Bilgili. 2010. "Linking Momentum Strategies with Single- 759 Portfolio Models", in J. Guerard, Ed. Handbook of Portfolio Construction: Contemporary 760 Applications of Markowitz Techniques, New York: Springer. 761
Onnela, J.P., A Chakraborti, K Kaski, J Kertész and A Kanto.2003. "Dynamics of Market 762 Correlations: Taxonomy and portfolio Analysis", Physical Review E 68, 056110.
Latane, H.A. 1959."Criteria for Choice Among Risky Ventures". Journal of Political Economy 67, 764 144-155.

765
Latane, H.A., D.L. Tuttle, and C.P. Jones. 1975. Security Analysis and Portfolio Management. 766 New York: The Roland Press. $2^{\text {nd }}$ Edition. 767
Lintner, J. 1965. "The Valuation of Risk Assets on the Selection of Risky Investments in Stock 768 Portfolios and Capital Investments." The Review of Economics and Statistics, 13-37. 769
Markowitz, H.M. 1952. "Portfolio Selection." Journal of Finance 7, 77-91. 770
Markowitz, H.M. 1959. Portfolio Selection: Efficient Diversification of Investment. Cowles Foun- 771 dation Monograph No. 16. New York, John Wiley \& Sons. 772
Markowitz, H.M. 1976. "Investment in the Long Run: New Evidence for an Old Rule." Journal of 773 Finance 31, 1273-1286.
Markowitz, H.M. Mean-Variance Analysis in Portfolio Choice and Capital Markets. Oxford: 775 Basil Blackwell, 1987. 776
Markowitz, H.M., and G. Xu. 1994. "Data Mining Corrections." Journal of Portfolio Management 777 21, 60-69.

778
Markowitz, H.M. 2000. Mean-Variance Analysis in Portfolio Choice and Capital Markets. 779 New Hope, PA: Frank J. Fabozzi Associates.
Mossin, J. 1966. "Equilibrium in a Capital Asset Market." Econometrica 34, 768-783. 781
Mossin, J. 1973. Theory of Financial Markets. Englewood Cliffs, N.J.: Prentice-Hall, Inc. 782
Pastor, L. and R. F. Stambaugh. 2003. "Liquidity Risk and Expected Stock Returns." Journal of 783 Political Economy, 111, 642-684.
Robinson, R. H. Greuning, E. Henry E., and M. Broihahn. 2009. In International Financial 785 Statement Analysis. CFA Institute Investment Series. 786
Siegel, L. B. 2003. U.S. equity style indexes. In Benchmarks and Investment Management, chapter 787 8. The CFA Institute Research Foundation.

Ramnath, S., S. Rock, and P. Shane. 2008. "The Financial Forecasting Literature: A Taxonomy with Suggestions for Further Research." International Journal of Forecasting, 24, 34-75.
Rosenberg, B. 1974. "Extra-Market Components of Covariance in Security Returns." Journal of Financial and Quantitative Analysis 9, 263-274.
Rosenberg, B. and V. Marathe, 1979. "Tests of Capital Asset Pricing Hypotheses." In Research in Finance 1, 1979, edited by H. Levy.
Ross, S.A. 1976. "The Arbitrage Theory of Capital Asset Pricing." Journal of Economic Theory 13, 341-360.
Ross, S.A. and R. Roll. 1980. "An Empirical Investigation of the Arbitrage Pricing Theory." Journal of Finance 35, 1071-1103.
Rudd, A., and H. K.Clasing 1982. Modern Portfolio Theory, The Principles of Investment Management. Homewood, IL: Dow-Jones Irwin.
Saxena, A. and R.A. Stubbs. 2010. Alpha Alignment Factor: A Solution to the Underestimation of Risk for Optimized Active Portfolios. Technical Report. Axioma, Inc. Research Report \#015, February.
Saxena, A. and R. A. Stubbs. Pushing Frontiers (literally) using Alpha Alignment Factor. Technical report, Axioma, Inc. Research Report \#022, February.
Saxena, A. and Robert A. Stubbs. 2012. "Synergistic Advantages of Custom Risk Models in Portfolio Construction: Risk Decomposition and Performance Attribution." Forthcoming.
Sharpe, W.F. 1963. "A Simplified Model for Portfolio Analysis." Management Science 9.
Sharpe, W.F. 1964. "Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk." Journal of Finance 19, 425-442.
Vander Weide, J. H. 2010. "Principles for Lifetime Portfolio Selection: Lessons from Portfolio Theory", in J. Guerard, Ed. Handbook of Portfolio Construction: Contemporary Applications of Markowitz Techniques. New York: Springer.

Author Queries

Chapter No.: 7 192189_1_En

Query Refs.	Details Required	Author's response
AU1	Please provide complete publication details for references "Guerard, Krauklis, and Kumar (2012), Guerard et al. (2010), Guerard (1997, 2012), Guerard and Takano (1991), Guerard and Mark (2003), Wormald and van der Merwe (2011, 2012), Grinhold and Kahn (1999), Markowitz (1956), Blin and Bender (1995), Chan et al. (1999), Levy (1999), Wheeler (1991), Malkiel (1963) and Fabozzi et al. (2002a)".	
AU2	Please check/clarify expression 'two- and-one-half years' in the sentence 'Blin and Bender (1987-1997) esti- mated a. .'.	
AU3	Please check if the insertion of citations for "Table 7.2 and Char. 7.1" is appropriate.	
AU4	Please cite references "APT Analy- tics Guide (2011), Connor and Kor- ajczyk (1988, 1993, 1995), Dharan (1997), Elton et al. (1981), Fama and French (1992, 1995, 1996, 2008), Grinhold and Kahn (2000), Mulvey et al. (2010), Latane et al. (1975), Markowitz (1976), Markowitz and Xu (1994), Mossin (1973), Pastor and Stambaugh (2003), Robinson et al. (2009), Siegel (2003), Ramnath et al. (2008), Saxena and Stubbs,	
Sharpe (1963) and Guerard et al.		
(1993)" in the text or delete them		
from the list.		

Chapter 8 1
Forecasting World Stock Returns 2
and Improved Asset Allocation 3

There is little evidence in the literature on whether predictability of stock returns 4 leads to improved asset allocation and performance (Handa and Tiwari 2006). 5 Handa and Tiwari (2006) found fixed results for forecasting 1-month-ahead results 6 in the USA for 1954-2002 period; the past-returns model worked well from 1974 to 7 1988 and poorly from 1959 to 1973 and 1989 to 2002. There are mixed academic 8 results for many financial tests. In this report, we show that it is possible to improve 9 performance of a naïve " $60 / 40$ " model of equity and debt to a " $60 / 40$ " model with 10 Global Timing (GT). We create a Global Timing signal based on the 12-month 11 moving average of the differential between the LIBOR rate and the All World 12 Country (ACW) index. If the predicted return signal, the differential of the 12-13 AU1 month average returns on the ACW, exceeds LIBOR by a statistically significant 14 difference (one standard deviation), then a "buy" signal is created. If the predicted 15
return signal is less than -1.645 , one standard deviation, then a "sell" decision is made. A neutral position exists in the signal and no change is made. ${ }^{1}$

As with Handa and Tiwari (2006), we restrict our investment choices to a relatively riskless asset, LIBOR, or an investment in ACWG securities. We test the model on ACW index and implement on the ACW or ACWG indexes. We are a growth manager and use the constituent securities in the ACWG index. The asset allocation benchmark is a " $60 / 40$ " portfolio invested in 60 percent in a passive basket of ACW securities. If the Tactical Asset Allocation (TAA) signal exceeds 1.645 , then we buy. If the TAA signal is less than -1.645 , then we sell. How can we implement such a strategy in a long-only investment portfolio? As with the McKinley Capital Management (MCM) "Global Alpha-Engineering a Dynamic Momentum" strategy, we may vary the portfolio lambda, the measure of the return-risk preference of the asset manager. If the TAA signal exceeds 0.645 ,

[^45]\[

$$
\begin{equation*}
L_{t}=\frac{L E I(t)-L E I(t-1)}{L E I(t-1)} \tag{8.1}
\end{equation*}
$$

\]

The lagged correlation between the GEM2 factor return and the LEI return is

$$
\begin{equation*}
\rho_{k}^{m}=\operatorname{corr}\left(f_{k t}^{P}, L_{t-m}\right) \tag{8.2}
\end{equation*}
$$

where $f_{k t}^{P}$ is the pure return to factor k over period t, and m is the number of lags in months.
Optimal portfolios are created using the MSCI Barra GEM2 risk model, the premier institutional asset manager portfolio management, and control system. The GEM2 model, described in Menchero et al. (2010), estimates a multifactor risk model composed of eight factors: the world, value, growth, momentum, liquidity, size, size nonlinearity, and leverage. The GEM2 Model is the global equivalent of the USE3 model used in Chap. 6. The Barra model allows the asset manager to specifically target desired portfolio exposures to accommodate client needs and expectations, such as having an exposure to momentum and not necessarily having other exposures. Simple factor portfolios have unit exposure to the particular factor, and nonzero exposure to other factors. Pure factor portfolios have unit exposure to the particular factor, and zero exposure to all other factors. Optimal factor portfolios have the minimum risk portfolio with unit exposure to the factor. Menchero et al. (2012) reported the strongest positive correlation that suggests a positive relationship between changes in the LEI and corresponding changes in Momentum six months later. A momentum-timing signal is created in which if an increase in 6-month average change in LEI exceeds 1.50 standard deviations, then one becomes aggressive with respective to momentum. One sells momentum if the 6-month average change in momentum is less than 1.50 standard deviations. We also present the cumulative performance of the pure Momentum factor, as well as the Euro LEI series. The momentum timing returns have been scaled to have the same realized volatility as the pure momentum factor over the 13-year period. Menchero et al. (2012) reported that the momentum timing strategy greatly outperforms the pure momentum strategy over this sample period, with the former climbing more than 60%, compared to only 20% return for the pure factor.

Table 8.1 Attribution report of the TAA signal portfolios, 1/2002-10/2011
t1.1

Source of return	Contribution (\% return)	Risk (\% std. dev.)	Info ratio	T-stat
1. Risk free	1.86			
2. Total benchmark	4.67	17.46		
3. Currency selection	3.67	3.52	1.09	3.40
4. Cash-equity policy	0.00	0.00		
5. Risk indices	6.16	4.36	1.23	3.86
6. Industries	-0.38	2.56	-0.14	-0.44
7. Countries	0.97	5.07	0.19	0.61
8. World equity	0.00	0.00		
9. Asset selection	1.16	3.22	0.41	1.29
10. Active equity $[5+6+7+8+9]$	7.91	7.60	0.96	3.02
11. Trading				
12. Transaction cost	-4.25			
13. Total active $[3+4+10+11+12]$	7.63	8.22	0.93	2.91
14. Total managed [2+13]	12.29	19.77		

Table 8.2 Strategy summary, January 2002-October 2011 \square

| Strategy | Cumulative
 Wealth ratio | Mean | Monthly return | Sharpe ratio |
| :--- | :--- | :--- | :--- | :--- | | t2.2 |
| :--- |
| t2.3 |

then we implement a portfolio lambda of 200, leading to an aggressive return-to- 29 risk portfolio. If the TAA signal is less than -1.645 , then we implement a lambda of 30 10 , indicating a relatively passive return-to-risk portfolio. If the TAA signal is 31 neutral, then we use a lambda of 75 . We use MQ, a quantitative-based strategy 32 described in the MCM "Global Alpha" research report, as the portfolio expected 33 return.

An investor can purchase instruments or ETFs to produce a " $60 / 40$ " return for 35 the February 1997-October 2011 period. We ran the simulations from January 199736 to October 2011, varying the portfolio returns using monthly signals and targeting 37 the All Country World Growth (ACWG) Index. We measure the performance of the 38 simulations from January 2002 to October 2011, the period of the Global (GEM2) 39 Model. The TAA signals portfolio produces statistically significant total active 40 returns, see Table 8.1.

Had an investor invested in a " $60 / 40$ " strategy, the mean monthly return of 1.18542 percent for January 2002-October 2011 exceeds the ACWG Index return of 0.50643
for the corresponding period. The " $60 / 40$ " $G T$ strategy produces a monthly return of 1.567 (including transactions costs of 150 basis points each way). The TAA signals portfolio outperforms the market and the " $60 / 40$ " strategy in producing higher Sharpe Ratios. Thus, the TAA portfolios produce higher returns for a given level of risk than the " $60 / 40$ " strategy and the ACWG index (Table 8.2).

CHART 1: TAA Analys is, 1/2002-10/2011

Summary and Conclusions

Stock return expectations can be used to vary the aggressiveness of equity portfolios that can lead to Tactical Asset Allocation decisions that can outperform a naïve " $60 / 40$ " strategy.

References

Guidolin, M. and A. Timmermann. 2004. "Economic Implications of Bull and Bear Regimes in UK Stock and Bond Returns". Unpublished Working Paper.
Handa, P. and A. Tiwari. 2006. "Does Stock Return Predictability Imply Improved Asset Allocation and Performance? Evidence from the U.S. Stock Markey (1965-2002). Journal of Business 79, 2423-2468.
Markowitz, H.M. 1959. Portfolio Selection: Efficient Diversification of Investment. Cowles Foundation Monograph No.16. New York, John Wiley \& Sons.
McKinley Capital Management, LLC. 2010. "Global Alpha-Engineering a Dynamic Exposure".
Menchero, J., A. Morozov, and J.B. Guerard, Jr. 2012. "Capturing the Eqity Risk Premia", Chapter 25 in C.F. Lee, J. Finnerty, J. Lee, and D. Wort. Security Analysis, Portfolio Management, and Financial Derivatives. Singapore: World Scientific.

Menchero, J., Morozov, A., and P. Shepard, 2010. "Global Equity Risk Modeling," in J. Guerard, 65 Ed., The Handbook of Portfolio Construction: Contemporary Applications of Markowitz 66 Techniques, Springer.
Menchero, J., 2010. "Characteristics of Factor Portfolios," MSCI Barra Research Insight.
MSCI Barra Fundamental Data Methodology Handbook, 2008, http://www.msci.com/methodol- 69 ogy/meth_docs/MSCI_Sep08_Fundamental_Data.pdf
Ramnath, S., S. Rock, and P. Shane. 2008. "The Financial Analyst Forecasting Literature: A 71 Taxonomy with Suggestions for Further Research." International Journal of Forecasting 24, 72 34-75.
Sadka, R. 2006. "Momentum and Post-Announcement Drift Anomalies: The Role of Liquidity 74 Risks." Journal of Financial Economics 80, 309-349.

Author Queries

Chapter No.: 8 192189_1_En

Query Refs.	Details Required	Author's response
AU1	Please check whether the expansion "All World Country" correctly corre- sponds to the acronym "ACW" in the sentence "We create a Global Timing signal...".	
AU2	Equations (8.3) and (8.4) have been changed to Equations (8.1) and (8.2) to maintain the sequential order. Please check if appropriate.	
AU3	Missing citation for Table 8.2 was inserted here. Please check if appro- priate. Otherwise, please provide citation for Table 8.2. Note that the order of main citations of tables in the text must be sequential.	
AU4	Guidolin and Timmermann. (2004); Markowitz (1959); McKinley Capital Management (2010); Menchero (2010); MSCI Barra Fundamental	
Data Methodology Handbook (2008); Ramnath et al. (2008); Ram- nath et al. (2008); Sadka (2006); Sadka (2006); The Conference Board LEI for the Euro Area (2001) have been provided in the reference list but citations in the text are missing. Please advise location of citations. Otherwise, delete it from the refer- ence list.		

Chapter 9 1Summary and Conclusions

The forecasting of earnings per share, eps, is a most important input to an investment 3 strategy. There is a tremendous literature regarding forecasting of corporate eps and 4 whether the forecasts are more accurate than a random walk or a random walk with 5 drift. Much of the literature can be summarized as follows: (1) analysts' forecasts are 6 not statistically different from a random walk with drift model; that is, analysts' 7 forecasts can be approximated with a first-order exponential smoothing model 8 forecast; (2) analysts' forecasts are biased; analysts' forecasts are optimistic; (3) 9 analysts' forecast revisions and the direction of their revisions are more highly 10 correlated with stock returns than earnings forecasts themselves; (4) earnings 11 forecasts are highly statistically significant in forecasting total stock returns; (5) 12 earnings forecasts, revisions, and direction of revisions can be combined with 13 fundamental data, such as earnings, book value, cash flow, sales, these variables 14 relative to their histories, and price momentum strategies to identify mispriced 15 stocks; (6) smaller capitalized stocks are more mispriced than larger capitalized 16 stocks; and (7) international and global stocks are more mispriced than the US 17 stocks.

We introduced the reader to regression models and various estimation 19 procedures. We have illustrated regression estimations by modeling consumption 20 functions and the relationship between real GDP and The Conference Board 21 Leading Economic Indicators (LEI). We estimated regressions using EViews, 22 SAS, and automatic modeling in Oxmetrics. There are many advantages with the 23 various regression software with regard to ease of use, outlier estimations, collin- 24 earity diagnostics, and automatic modeling procedures. 25

We introduced reader to the time series work of Professors box and Jenkins and 26 examined the predictive information in The Conference Board LEI for the USA, the 27 UK, Japan, and France. We find that The Conference Board LEI and FIBER short- 28 term LEI are statistically significant in modeling the respective real GDP changes 29 during the 1970-2000 period. One rejects the null hypothesis of no association 30 between changes in the LEI and changes in real GDP in the USA, and the G7 31 nations. If one uses a rolling 32 quarter estimation period and a one-period-ahead 32
forecasting root mean square error calculation, the LEI forecasting errors are not significantly lower than the univariate ARIMA model forecasts.

We used two case studies to illustrate the effectiveness of regression modeling. Regression analysis offered marginal improvement in the case of combining GNP forecasts, but offered substantial improvement in identifying financial variables associated with security returns. We introduced the reader to a stock selection model that combined earnings forecasts, fundamental variables derived from balance sheet and income statement analysis, and price momentum variables. The regression-based United States Expected Returns (USER) Model was highly statistically significant in construction. Regression techniques addressing outliers and multicollinearity problems in the USER Model outperformed equally weighted strategies in stock selection modeling.

A case study of mergers was introduced so that the reader could examine Granger causality testing in detail. Mergers were modeled as a function of the LEI and stock prices. We found causality in the Chan and Lee (1990) test in that LEI and stock prices caused mergers.

The Barra Aegis system has been the industry standard for portfolio construction, management, and measurement for almost 40 years. We demonstrated the effectiveness of the Barra Aegis system to create investment management strategies to produce portfolios and attribute portfolio returns to the Barra multifactor risk model during the December 1979-2009 period. We find additional evidence to support the use of MSCI Bara multifactor models for portfolio construction and risk control. We report two results: (1) a composite model incorporating fundamental data, such as earnings, book value, cash flow, and sales, with analysts' earnings forecast revisions and price momentum variables to identify mispriced securities; (2) the returns to a multifactor risk-controlled portfolio allow us to reject the null hypothesis that the results are due to data mining. We develop and estimate three levels of testing for stock selection and portfolio construction. The use of multifactor risk-controlled portfolio returns allows us to reject the null hypothesis that the results are due to data mining. The anomalies literature can be applied in real-world portfolio construction.

We addressed several additional issues in portfolio construction and management with the USER data. First, we report that the Markowitz Mean-Variance (MV) optimization technique dominates the Enhanced Index-Tracking optimization technique at most security weight ranges. Second, we report that the Systematic Tracking Error optimization technique reported by Wormald and van der Merwe (2012) is very effective in the US and Global markets. Finally, we report that the Saxena and Stubbs (2012) Axioma Alpha Alignment Factor (AAF) is appropriate for USER and global (GLER) Data and that the Axioma Statistical Risk Model dominates the Axioma Fundamental Model. The Markowitz approach to portfolio construction and management is sixty years old and remains an integral tool of investment research. Earnings forecasts play a very important role in identifying mispriced securities.

Finally, stock return expectations can be used to vary the aggressiveness of 76 equity portfolios that can lead to Tactical Asset Allocation decisions that can 77 outperform a naïve " $60 / 40$ " strategy.

Forecasting earnings is an integral component to stock selection modeling and 79 investment analysis.

Author Queries

Chapter No.: 9 192189_1_En

Query Refs.	Details Required	Author's response
AU1	Chan and Lee (1990) is cited in the text but its bibliographic information is missing. Kindly provide its biblio- graphic information. Otherwise, please delete it from the text.	
AU2	Please check whether the edit made to the sentence "We report two results. .." is ok.	
AU3	Wormald and van der Merwe (2012) is cited in the text but its biblio- graphic information is missing. Kindly provide its bibliographic in- formation. Otherwise, please delete it from the text.	
AU4	Saxena and Stubbs (2012) is cited in the text but its bibliographic informa- tion is missing. Kindly provide its bibliographic information. Other- wise, please delete it from the text.	

[^0]: ${ }^{1}$ The reader is referred to an excellent statistical reference, S. Makridakis, S.C. Wheelwright, and R. J. Hyndman, Forecasting: Methods and Applications, Third Edition (New York; Wiley, 1998), Chapter 5.

[^1]: ${ }^{2}$ See Fama, Foundations of Finance, 1976, Chapter 3, p. 101-2, for an IBM beta estimation with an equally weighted CRSP Index.

[^2]: ${ }^{3}$ In recent years the marginal propensity to consume has risen to the 0.90 to 0.97 range, see Joseph Stiglitz, Economics, 1993, p. 745.

[^3]: ${ }^{4}$ D. Cochrane and G.H. Orcutt, "Application of Least Squares Regression to Relationships Containing Autocorrelated Error Terms," Journal of the American Statistical Association, 1949, 44: 32-61.

[^4]: ${ }^{5}$ The reader is referred to C.T. Clark and L.L. Schkade, Statistical Analysis for Administrative Decisions (Cincinnati: South-Western Publishing Company, 1979) and Makridakis, Wheelwright, and Hyndman, Op. Cit., 1998, pages 221-225, for excellent treatments of this topic.

[^5]: ${ }^{6}$ Ox Professional version 6.00 (Windows/U) (C) J.A. Doornik, 1994-2009, PcGive 13.0.See Doornik and Hendry (2009a, b).

[^6]: ${ }^{1}$ Section "ARMA Model Identification in Practice" can be omitted with little loss of continuity with readers more interested in the application of time series models.
 ${ }^{2}$ This section draws heavily from Box and Jenkins (1970, Chaps. 2 and 3).

[^7]: ${ }^{3}$ Please see Box and Jenkins, Time Series Analysis, Chap. 3, for the most complete discussion of the ARMA (p, q) models.

[^8]: ${ }^{5}$ Box and Jenkins, Time Series Analysis. Chapter 6; C.W.J. Granger and Paul Newbold, Forecasting Economic Time Series. Second Edition (New York: Academic Press, 1986), pp. 109-110, 115-117, 206.
 ${ }^{6}$ Granger and Newbo1d, Forecasting Economic Time Series. pp. 185-186.

[^9]: ${ }^{7}$ Box and Jenkins, Time Series Analysis. pp. 173-179.
 ${ }^{8}$ G.E. Box and D.R. Cox, "An Analysis of Transformations," Journal of the Royal Statistical Society, B 26 (1964), 211-243.

[^10]: ${ }^{9}$ G.M. Jenkins, "Practical Experience with Modeling and Forecasting Time Series," Forecasting (Amsterdam: North-Holland Publishing Company, 1979).
 ${ }^{10}$ Jenkins, op. cit., pp. 135-138.
 ${ }^{11}$ Box and Jenkins, Time Series Analysis, pp. 305-308.

[^11]: ${ }^{12}$ Box and Jenkins, op. cit.

[^12]: ${ }^{13}$ The EViews software, EViews4, in this chapter is an extremely easy system to use. The author first worked with Box-Jenkins time series model using the Nelson (1973) and Jenkins (1979) monographs and the ARIMA programs of David Pack (1982).
 ${ }^{14}$ Victor Zarnowitz was formerly emeritus of the University of Chicago, Senior Economist at TCB, and a long-term fellow Associate Editor of the author at The International Journal of Forecasting.

[^13]: ${ }^{1}$ The reader will see a variation of (4.1) and (4.2) in Chap. 5 when we discuss optimal security weights in a portfolio. The Bates and Granger optimal forecast weighting is a variation of the optimal Markowitz (1959) two-asset security calculation.

[^14]: ${ }^{2}$ Granger (1989) additionally pointed out that if the optimum value for k is 0.3 , one may still obtain poor combined forecast if k takes two values only, being 0 on 60% of occasions and 1.0 on the remaining 40%.

[^15]: ${ }^{3}$ This research was supported in part by the National Science Foundation under Grant IST 8600788. We thank George Jaszi of the BEA and Donald Straszheim of Wharton, who graciously provided the forecasts from their respective econometric models. The authors are indebted to Professors S. Sharma and W.L. James for providing access to their LRR procedure as described in Sharma and James (1981).

[^16]: ${ }^{4}$ Savita Subramanian (2011), "US Quantitative Primer," Bank of America Merrill Lynch, May.

[^17]: ${ }^{5}$ There are many approaches to security valuation and the creation of expected returns. The first approaches to security analysis and stock selection involved the use of valuation techniques using reported earnings and other financial data. Graham and Dodd (1934) recommended that stocks be purchased on the basis of the price-earnings (P / E) ratio and Basu (1977) reported evidence supporting the low P/E model. James (Jim) Miller, Chief Investment Officer, CIO, of Continental Bank commissioned the project with Drexel, Burnham, Lambert, in 1989. Miller and Guerard (1991) presented a stock selection model at The Berkeley Program in Finance that used earnings, book value, cash flow, sales, relative variables, and earnings per share forecast revisions. Miller and Guerard experimented with a price momentum variable, the Columbine Alpha, described in Brush (2001). Jack Brush's Columbine Alpha "pushed out" the eight-factor EP, BP, CP, SP, and relative variables' Efficient Frontier. Guerard delivered paper sat Columbine Equity Research conferences in 1989 and 1994. See Guerard (1990).
 ${ }^{6}$ Guerard (2006) reestimated the GPRD model using PACAP data at The Wharton School from Wharton Research Data Services (WRDS). The WRDS/PACAP data is as close to the GPRD data as was possible in academia. The average cross-sectional quarterly WLRR model F-statistic in the GPRD analysis was 16 during the 1974-1990 period whereas the corresponding F-statistic reported in the Guerard (2006) was 11 for the post-publication, 1993-2001 period. Both sets of models were highly statistically significant and could be effectively used as stock selection models.

[^18]: ${ }^{7}$ Haugen and Baker (2010) extended their 1996 study in a recent volume to honor Harry Markowitz. Haugen and Baker estimate their model using weighted least squares. In a given month they estimated the payoffs to a variety of firm and stock characteristics using a weighted least squares multiple regression in each month in the period 1963 through 2007. Haugen and Baker found the most significant factors were; Residual Return is last month's residual stock return unexplained by the market.

[^19]: ${ }^{1}$ One must apparently be even more careful with the Box-Pierce test on sums of squared ρ_{k}.

[^20]: ${ }^{2}$ OLS estimation suffices to produce unbiased estimates, since all the bivariate models considered are reduced forms. It also allows one to consider variants of one equation without disturbing the forecasting results from the other, and it is computationally simpler. On the other hand, where substantial contemporaneous correlation occurs between the residuals, seemingly unrelated regression GLS estimation can be expected to yield noticeably better parameter estimates and post-sample forecasts. All estimation in this study is OLS; a re-estimation of our final bivariate model using GLS might strengthen our conclusions somewhat.
 ${ }^{3}$ Alternatively, one might fit both models to the sample period, produce forecasts of the first postsample observation, reestimate both models with that observation added to the sample, forecast the second post-sample observation, and so on until the end of the post-sample period. This would, of course, be more expensive than the approach in the text.

[^21]: ${ }^{4}$ If one finds that one model (using a wider information set, say) fits better than another, one is really saying "If I had known that at the beginning of the sample period, I could have used that information to construct better forecasts during the sample period." But this is not strictly operational and thus seems somewhat contrary in spirit to the basic definition of causality that we employ.

[^22]: ${ }^{5}$ The merger history of the United States was studied by Nelson (1959), who reported that mergers were highly correlated with stock prices and industrial production from 1895 to 1954. Nelson (1966) later found that stock prices lead mergers by over 5 months (5.25) over the 1919-1961 period. Melicher et al. (1983) and Guerard (1985) used ARIMA and transfer function modeling to find that stock prices lead mergers. Guerard and McDonald (1995) reported that the annual merger series from 1895 to 1979 was a near-random walk and that outlier-estimated time series models did not statistically outperform the naïve random walk with drift model. Golbe and White (1993) fit a sine wave to a "spliced" US annual merger history and found that a sine wave, representing a 40year merger model, described the behavior of mergers.

[^23]: ${ }^{7}$ Neither stock prices nor LEI passed the AGS (1980) causality test for mergers.

[^24]: ${ }^{8}$ The SCA outlier estimation using stock prices as the input series is:

[^25]: ${ }^{9}$ Had one modeled stock prices and mergers for the 1979-2011 period, one finds only a contemporaneous relationship and no strong causality findings.
 ${ }^{10}$ We use M1P, a variation on M1, rather than M3, that was used in the earlier studies because M3 was discontinued in the FRED database.

[^26]: ${ }^{1}$ The CAPM beta, its measure of systematic risk, from the Capital Market Line equilibrium condition, in an alternative formulation:

 $$
 \begin{gather*}
 \beta_{j}=\frac{\operatorname{Cov}\left(R_{j}, R_{\mathrm{M}}\right)}{\operatorname{Var}\left(R_{\mathrm{M}}\right)} \tag{6.2}\\
 E\left(R_{j}\right)=R_{\mathrm{F}}+\left[\frac{E\left(R_{\mathrm{M}}\right)-R_{\mathrm{F}}}{\sigma_{\mathrm{M}}^{2}}\right] \operatorname{Cov}\left(R_{j}, R_{\mathrm{M}}\right) \\
 =R_{\mathrm{F}}+\left[E\left(R_{\mathrm{M}}\right)-R_{\mathrm{F}}\right] \frac{\operatorname{Cov}\left(R_{j}, R_{\mathrm{M}}\right)}{\operatorname{Var}\left(R_{\mathrm{M}}\right)} \\
 E\left(R_{j}\right)=R_{\mathrm{F}}+\left[E\left(R_{\mathrm{M}}\right)-R_{\mathrm{F}}\right] \beta_{j} \tag{6.3}
 \end{gather*}
 $$

 Equation (6.3) defines the Security Market Line, (SML), which describes the linear relationship between the security's return and its systematic risk, as measured by beta.
 ${ }^{2}$ Standard \&Poor's, The Stock Market Encyclopedia, uses 5 years on monthly data to estimate beta coefficients.

[^27]: ${ }^{3}$ We have glossed over a number of econometric subtleties in these few sentences. Those readers who wish to learn more about these estimation difficulties are directed toward the following articles and the references contained there: Merton Miller and Myron Scholes, "Rates of Return in Relation to Risk: A Reexamination of Recent Findings," in Studies in The Theory of Capital Markets, ed. Michael Jensen (New York: Praeger Publishers, 1972), pp. 47-48.

[^28]: ${ }^{4}$ When an analyst forms a judgment on the likely performance of a company, many sources of information can be synthesized. For instance, an indication of future risk can be found in the balance sheet and the income statement; an idea as to the growth of the company can be found from trends in variables measuring the company's position; the normal business risk of the company can be determined by the historical variability of the income statement; and so on. The approach that Rosenberg and Marathe take is conceptually similar to such an analysis since they attempt to include all sources of relevant information. This set of data includes historical, technical, and fundamental accounting data. The resulting information is then used to produce, by regression methods, the fundamental predictions of beta, specific risk, and the exposure to the common factors.

 The fundamental prediction method of Barra starts by describing the company, see Rudd and Clasing (1982). The Barra USE1 Model estimated "descriptors," which are ratios that describe the fundamental condition of the company. These descriptors are grouped into six categories to indicate distinct sources of risk. In each case, the category is named so that a higher value is indicative of greater risk.

[^29]: ${ }^{5}$ According to BARRA online advertisements.
 ${ }^{6}$ The COMPUSTAT database is one of the databases collected by Investors Management Sciences, Inc., a subsidiary of Standard \& Poor's Corporation.

[^30]: ${ }^{7}$ See Barr Rosenberg and Vinay Marathe, "Common Factors in Security Returns: Microeconomic Determinants and Macroeconomic Correlates," Proceedings of the Seminar on the Analysis of Security Prices, University of Chicago, May 1976, pp. 61-115 and Rosenberg and Marathe (1979).

[^31]: ${ }^{8}$ This step is equivalent to defining an origin for measurement.

[^32]: ${ }^{9}$ This is the statistically efficient approach, and it requires that each observation be weighted inversely to its residual variance.

[^33]: ${ }^{10}$ The Barra US Equity Model (USE4) was introduced in September 2011. The USE4 Model contains 12 style factors: Beta, Momentum, Size, Earnings Yield, Residual Volatility, Growth, Dividend Yield, Book-to-Price, Leverage, Liquidity, Nonlinear Size, and Nonlinear Beta. Menchero and Orr (2012) hold that the sample covariance matrix under-predicts risk and improved risk forecasts, lower biases, are linked to biases in eigenportfolios (removing eigenportfolio biases). Better risk-adjusted performance of portfolios results from better covariance adjustments.

[^34]: ${ }^{11}$ Haugen and Baker (2010) extended their 1996 study in a recent volume to honor Harry Markowitz. Haugen and Baker estimate their model using weighted least squares. They estimated the payoffs to a variety of firms and stock characteristics using a weighted least squares multiple regression in each month in the period 1963 through 2007. Haugen and Baker find that the most significant factors are the following:

[^35]: ${ }^{12}$ The regression-weighted USER outperforms the equally weighted model, EQ, in terms of maximizing the Sharpe Ratio, Information Ratio, Geometric Mean, and the t-value on Barraestimated Asset Selection, a result consistent with Bloch et al. (1993), see Guerard et al. (2012).

[^36]: ${ }^{13}$ The statistical significance of USER in the 1980-2009 period is consistent with Bloch et al. (1993) and Stone and Guerard (2010b).

[^37]: ${ }^{14}$ The eight-factor model generated statistically significant predictive power when used in the portfolio optimization and construction processes of Stone (1970, 1973, 2010a).

[^38]: ${ }^{1}$ In Chap. 6, we reported that asset selection was statistically significant in the Barra Aegis system. We report similar results with Sungard APT and Axioma. The author's belief is that the three systems can be used to produce highly statistically significant asset selection and very good portfolio returns and great risk-return statistics. One needs to decide if one wants to set Lambda, as with Sungard APT, active risk, as with Axioma, and risk acceptance parameters, as with Barra. In the author's view, APT, the system that the author has used since 1989 is outstanding and very adequate. Many (intelligent) people choose active risk (tracking error targets). As long as you are statistically significant in asset selection with the USER variable (or other proprietary forms) and are man-enough to implement the model to maximize the Sharpe Ratio and Geometric Mean (having a negative size exposure and positive momentum, growth, and value exposures), then the choice of APT and Axioma (and Barra) is analogous to the man who is asked if he prefers blondes, brunettes, or redheads; one prefers great minds, strong wills, good looks, and the hair color, preferably natural, is a lesser concern. Not all risk models and optimizers work, as we found out in the McKinley Capital Horse Race and research seminars of 2009 and 2011. Some systems are more expensive and their portfolios are dominated by APT, Axioma, and Barra on a risk-return analysis. We found a decidedly negative correlation between cost and performance.

[^39]: ${ }^{2}$ Harry Markowitz often (always) reminds his audiences and readers that he discussed the possibility of looking at security returns relative to index returns in Chap. 4, footnote 1, page 100, of Portfolio Selection (1959).

[^40]: ${ }^{3}$ The reader is referred to Chap. 2 of Guerard (2010) for a history of multi-index and multi-factor risk models.

[^41]: ${ }^{4}$ Guerard (2012) decomposed the MQ variable into: (1) price momentum, (2) the consensus analysts' forecasts efficiency variable, CIBF, which itself is composed of forecasted earnings yield, EP, revisions, EREV, and direction of revisions, EB, identified as breadth, Wheeler (1991), and (3) the stock standard deviation, identified in Malkiel (1963) as a variable with predictive power regarding the stock price-earnings multiple. Guerard (1997) and Guerard and Mark (2003) found that the consensus analysts' forecast variable dominated analysts' forecasted earnings yield, as measured by I/B/E/S 1-year-ahead forecasted earnings yield, FEP, revisions, and breadth. Guerard reported domestic (US) evidence that the predicted earnings yield is incorporated into the stock price through the earnings yield risk index. Moreover, CIBF dominates the historic low price-to-earnings effect, or high earnings-to-price, PE.

[^42]: ${ }^{5}$ There is a large literature on the application of optimization to portfolio construction, starting with Markowitz $(1952,1959)$ and reviewed in Fabozzi et al. (2002a). A recent comprehensive overview can be found in the volume edited by Guerard (2010). An alternative approach might be pursued using ultrametrics and spanning trees rather than correlation shrinkage, see Onnela et al. (2003) for more on this approach.

[^43]: ${ }^{6}$ The Bias statistic, shown is a statistical metric which is used to measure the accuracy of risk prediction; if the ex-ante risk prediction is unbiased, then the bias statistic should be close to 1.0 (see Saxena and Stubbs 2010 for more details). Clearly, the bias statistics obtained without the aid of the AAF methodology are significantly above the 95% confidence interval thereby showing that the downward bias in the risk prediction of optimized portfolios is statistically significant. The AAF methodology recognizes the possibility of inadequate systematic risk estimation and guides the optimizer to avoid taking excessive unintended bets.

[^44]: ${ }^{7}$ The author worked on the GLER analysis with Anureet Saxena. Any errors remaining in this section are the sole responsibility of the author.
 ${ }^{8}$ It is interesting to note that initial Axioma analysis suggests that purchasing AWCG constituents produce similar Information Ratios and Sharpe Ratios to purchasing FactSet and Thomson Financial securities (with at least two analysts covering the stocks, a universe exceeding index constituents by a factor of 5-6 times). The similar Sharpe Ratios and IRs are very interesting given the very illiquid composition of many securities (trading volume of less than $\$ 15 \mathrm{MM}$ USD, daily).

[^45]: ${ }^{1}$ A similar signal was developed to investigate the relationship between Euro LEI and the GEM2 factor returns. For instance, suppose that a rise in the LEI one month could be associated with a rise in a GEM2 factor return three months later. An investor might then profit by taking a long position in the factor whenever the three-month lagged LEI were positive. One can use the Euro area Leading Economic indicator, LEI, series published by The Conference Board (TCB). Let $L E I(t)$ be the LEI level at the end of month t. Generally, these values are published with a 1- or 2-month lag. The "return" to the LEI over month t is then given by

