Sergey Dyachenko, Stokes waves in conformal plane: the Hamiltonian variables and instabilities

Submitted by Ingrid Richter on

The Department of Applied Mathematics weekly seminar is given by scholars and researchers working in applied mathematics, broadly interpreted. 

 


Title: Stokes waves in conformal plane: the Hamiltonian variables and instabilities

Abstract: The Stokes wave is a water wave that travels over a free surface of water without changing shape. When a time-varying fluid domain is mapped to a fixed geometry, such as a periodic strip in the lower half-plane, the equation for the Stokes wave is a nonlinear integro-differential ODE whose solutions are found numerically to arbitrary precision. The spectral stability of Stokes waves is studied by linearization of the equations of motion for the free surface around a Stokes wave, and studying the spectrum of the associated Fourier-Floquet-Hill (FFH) eigenvalue problem. We developed a novel approach to studying the eigenvalue spectrum by combining the conformal Hamiltonian canonical variables, the FFH technique built into a matrix-free Krylov-Schur eigenvalue solver. We report new results for the Benjamin-Feir instability as well as the high-frequency, and localized (superharmonic) instabilities of the waves close to the limiting Stokes wave.

Share